Coconut water: production, nutritional properties and health benefits

Authors

  • Isabela da Mota Leal Lemos
  • Adriana Aniceto
  • Anderson Junger Teodoro

DOI:

https://doi.org/10.55905/oelv21n2-021

Keywords:

coconut water, production, health

Abstract

Coconut water (Cocos nucifera L.) is an undiluted, non-fermented beverage obtained from the liquid part of the coconut fruit. It is a versatile product in the industry and has been growing economically due to its functional character. The objective is to identify in the scientific literature different aspects of coconut water production and its nutritional characteristics applied to health. A narrative review of the literature was carried out, using the databases Scielo, Scopus, Repositório Alice da EMBRAPA, Periódicos CAPES and Google academic, applying the descriptors, coconut water, nutrition, composition, health, health benefits, economy, pasteurization, ultrapressure, ultrasound, ozone and their respective names in English, considering the Boolean operators “OR” and “AND”. Titles and abstracts were screened, considering the eligibility criteria: full text available in English and/or Portuguese; paid and/or free access; dissertations and theses, narrative, systematic review, observational and longitudinal studies, including clinical trials. Non-thermal processing methods were effective in maintaining the shelf life of the beverage, however ultrapressure showed alterations in the physical functionality and/or changes in the color of protein-rich foods. The presence of phytohormones, vitamins and amino acids was detected, which are responsible for the antioxidant property of the product, as well as the beneficial effects on health. New studies are proposed to evaluate the effects of coconut water on human health, as it is a drink with market potential and accessible to consumers.

References

Abreu, F. A. P. de, & Souza, A. C. R. de. (2017). Água de coco pasteurizada em sistemas HTST: Fabricação em pequenas e médias escalas de processamento. http://www.infoteca.cnptia.embrapa.br/handle/doc/1068837

Agbafor, K., Elom, S., Ogbanshi, M., Oko, A., Uraku, A., Nwankwo, V., Ale, B., & OBIUDU, K. (2015). Antioxidant Property and Cardiovascular Effects of Coconut (Cocos nucifera) Water. International Journal of Biochemistry Research & Review, 5, 259–263. https://doi.org/10.9734/IJBCRR/2015/9805

Alchoubassi, G., Kińska, K., Bierla, K., Lobinski, R., & Szpunar, J. (2021). Speciation of essential nutrient trace elements in coconut water. Food Chemistry, 339, 127680. https://doi.org/10.1016/j.foodchem.2020.127680

APROCOCO. (2020, setembro 2). COQUEIRO HÍBRIDO. VANTAGENS E DESVANTAGENS - APROCOCO Brasil. https://aprococobrasil.org.br/. https://aprococobrasil.org.br/coqueiro-hibrido-vantagens-e-desvantagens/

Aroucha, E. M. M., Góis, V. A. de, Leite, R. H. de L., Santos, M. C. A., & Sousa, M. S. de. (2010). Acidez em frutas e hortaliças. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 5(2), 32.

Assa, R. R., Konan, J. K., Prades, A., Nemlin, J., & Koffi, E. (2010). Physicochemical characteristics of kernel during fruit maturation of four coconut cultivars (Cocos nucifera L.). African Journal of Biotechnology, 9(14), Art. 14. https://doi.org/10.4314/ajb.v9i14

Bispo, V. S., Dantas, L. S., Chaves, A. B., Pinto, I. F. D., Silva, R. P. D., Otsuka, F. a. M., Santos, R. B., Santos, A. C., Trindade, D. J., & Matos, H. R. (2017). Reduction of the DNA damages, Hepatoprotective Effect and Antioxidant Potential of the Coconut Water, ascorbic and Caffeic Acids in Oxidative Stress Mediated by Ethanol. Anais Da Academia Brasileira de Ciências, 89, 1095–1109. https://doi.org/10.1590/0001-3765201720160581

Brainer, M. S. de C. P. (2021). Coco: Produção e mercado. https://www.bnb.gov.br/s482dspace/handle/123456789/s1dspp01.dmz.bnb:8443/s482-dspace/handle/123456789/1043

Brainer, M. S. de C. P., & Ximenes, L. F. (2020). Produção de coco: Soerguimento das áreas tradicionais do Nordeste. https://www.bnb.gov.br/s482dspace/handle/123456789/s1dspp01.dmz.bnb:8443/s482-dspace/handle/123456789/387

Brasil. (2020). INSTRUÇÃO NORMATIVA No 9, DE 30 DE JANEIRO DE 2020—DOU - Imprensa Nacional. https://www.in.gov.br/web/dou

Camargo Prado, F., De Dea Lindner, J., Inaba, J., Thomaz-Soccol, V., Kaur Brar, S., & Soccol, C. R. (2015). Development and evaluation of a fermented coconut water beverage with potential health benefits. Journal of Functional Foods, 12, 489–497. https://doi.org/10.1016/j.jff.2014.12.020

Chagas, T. P. N., Souza, L. M. V., Santos, T. dos, Jesus, B. O. de, Dantas, E. H. M., & Prado, E. S. (2017). IMPACTO DA REPOSIÇÃO HÍDRICA COM ÁGUA DE COCO SOBRE O ESTADO DE HIDRATAÇÃO E CARDIOVASCULAR DRIFT DURANTE O EXERCÍCIO. Journal of Physical Education, 28. https://doi.org/10.4025/jphyseduc.v28i1.2804

Charlo, H. C. de O., Castoldi, R., Vargas, P. F., & Braz, L. T. (2009). Desempenho de híbridos de melão-rendilhado cultivados em substrato. Científica, 37(1), Art. 1. https://doi.org/10.15361/1984-5529.2009v37n1p16

Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023

Considine, K. M., Kelly, A. L., Fitzgerald, G. F., Hill, C., & Sleator, R. D. (2008). High-pressure processing—Effects on microbial food safety and food quality. FEMS Microbiology Letters, 281(1), 1–9. https://doi.org/10.1111/j.1574-6968.2008.01084.x

Dai, Y., Peng, L., Zhang, X., Wu, Q., Yao, J., Xing, Q., Zheng, Y., Huang, X., Chen, S., & Xie, Q. (2021). Effects of coconut water on blood sugar and retina of rats with diabetes. PeerJ, 9, e10667. https://doi.org/10.7717/peerj.10667

Datta, N., & Deeth, H. C. (2001). Age Gelation of UHT Milk—A Review. Food and Bioproducts Processing, 79(4), 197–210. https://doi.org/10.1205/096030801753252261

de Oliveira, D. M. (2019). Drivers de mercado de produtos do coco e o desenvolvimento de novas cultivares de coqueiro no Brasil. 59.

Deeth, H. (2010). 13—Improving UHT processing and UHT milk products. Em M. W. Griffiths (Org.), Improving the Safety and Quality of Milk (p. 302–329). Woodhead Publishing. https://doi.org/10.1533/9781845699420.4.302

Deeth, H. C., & Lewis, M. J. (2017). High Temperature Processing of Milk and Milk Products. John Wiley & Sons.

Deeth, H., & Lewis, M. (2016). Protein Stability in Sterilised Milk and Milk Products. Em P. L. H. McSweeney & J. A. O’Mahony (Orgs.), Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects (p. 247–286). Springer. https://doi.org/10.1007/978-1-4939-2800-2_10

Delorme, M. M., Guimarães, J. T., Coutinho, N. M., Balthazar, C. F., Rocha, R. S., Silva, R., Margalho, L. P., Pimentel, T. C., Silva, M. C., Freitas, M. Q., Granato, D., Sant’Ana, A. S., Duart, M. C. K. H., & Cruz, A. G. (2020). Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science & Technology, 102, 146–154. https://doi.org/10.1016/j.tifs.2020.06.001

Embrapa, Ferreira, J. M. S., Warwick, D. R. N., & Siqueira, L. A. (2018). A Cultura do Coqueiro no Brasil (3a edição). Embrapa.

European Food Safety Authority (EFSA). (2013). Scientific Opinion on Dietary Reference Values for manganese | EFSA. https://www.efsa.europa.eu/en/efsajournal/pub/3419

FAOSTAT. ([s.d.]). Recuperado 15 de novembro de 2022, de https://www.fao.org/faostat/en/#home

Fowoyo, P., & Alamu, J. (2018). Nutritional Composition and Antimicrobial Activity of Coconut Water Against Selected Gastrointestinal Pathogens. International Journal of Microbiology and Application, 5(1), Art. 1.

Gautam, D., Umagiliyage, A. L., Dhital, R., Joshi, P., Watson, D. G., Fisher, D. J., & Choudhary, R. (2017). Nonthermal pasteurization of tender coconut water using a continuous flow coiled UV reactor. LWT - Food Science and Technology, 83, 127–131. https://doi.org/10.1016/j.lwt.2017.05.008

Huang, G., Chen, S., Dai, C., Sun, L., Sun, W., Tang, Y., Xiong, F., He, R., & Ma, H. (2017). Effects of ultrasound on microbial growth and enzyme activity. Ultrasonics Sonochemistry, 37, 144–149. https://doi.org/10.1016/j.ultsonch.2016.12.018

Jirapong, C., Wongs-Aree, C., Noichinda, S., Uthairatanakij, A., & Kanlayanarat, S. (2015). Assessment of volatile and non-volatile organic compounds in the liquid endosperm of young ‘Nam Hom’ coconut (Cocos nucifera L.) at two stages of maturity. The Journal of Horticultural Science and Biotechnology, 90(5), 477–482. https://doi.org/10.1080/14620316.2015.11668703

Kailaku, S. I., Setiawan, B., & Sulaeman, A. (2017). The Shelf Life Estimation of Cold Sterilized Coconut Water. PLANTA TROPIKA: Jurnal Agrosains (Journal of Agro Science), 5(1), Art. 1. https://doi.org/10.18196/pt.2017.072.62-69

Kumar, M., Saini, S. S., Agrawal, P. K., Roy, P., & Sircar, D. (2021). Nutritional and metabolomics characterization of the coconut water at different nut developmental stages. Journal of Food Composition and Analysis, 96, 103738. https://doi.org/10.1016/j.jfca.2020.103738

Kumar, S. S., Manna, K., & Das, A. (2018). Tender coconut water attenuates heat stress-induced testicular damage through modulation of the NF-κB and Nrf2 pathways. Food & Function, 9(10), 5463–5479. https://doi.org/10.1039/C8FO01207E

Laitano, O., Trangmar, S. J., Marins, D. de M., Menezes, E. S., & Reis, G. da S. (2014). Improved exercise capacity in the heat followed by coconut water consumption. Motriz: Revista de Educação Física, 20, 107–111. https://doi.org/10.1590/S1980-65742014000100016

Lakshmanan, J., Zhang, B., Wright, K., Motameni, A. T., Jaganathan, V. L., Schultz, D. J., Klinge, C. M., & Harbrecht, B. G. (2020). Tender coconut water suppresses hepatic inflammation by activating AKT and JNK signaling pathways in an in vitro model of sepsis. Journal of Functional Foods, 64, 103637. https://doi.org/10.1016/j.jff.2019.103637

Lima, R. R., Gomes, E. R., Stephani, R., Perrone, Í. T., Carvalho, A. F. de, & Oliveira, L. F. C. de. (2021). Nutritional and technological aspects of vegetable oils that stand out for the prevalence of medium-chain triacylglycerides: A review. Research, Society and Development, 10(7), Art. 7. https://doi.org/10.33448/rsd-v10i7.16667

Ma, Y., Xu, L., Wang, S., Xu, Z., Liao, X., & Cheng, Y. (2019). Comparison of the quality attributes of coconut waters by high-pressure processing and high-temperature short time during the refrigerated storage. Food Science & Nutrition, 7(4), 1512–1519. https://doi.org/10.1002/fsn3.997

Mahayothee, B., Koomyart, I., Khuwijitjaru, P., Siriwongwilaichat, P., Nagle, M., & Müller, J. (2016). Phenolic Compounds, Antioxidant Activity, and Medium Chain Fatty Acids Profiles of Coconut Water and Meat at Different Maturity Stages. International Journal of Food Properties, 19(9), 2041–2051. https://doi.org/10.1080/10942912.2015.1099042

Mahnot, N. K., Mahanta, C. L., Farkas, B. E., Keener, K. M., & Misra, N. N. (2019). Atmospheric cold plasma inactivation of Escherichia coli and Listeria monocytogenes in tender coconut water: Inoculation and accelerated shelf-life studies. Food Control, 106, 106678. https://doi.org/10.1016/j.foodcont.2019.06.004

Manna, K., Khan, A., Kr. Das, D., Bandhu Kesh, S., Das, U., Ghosh, S., Sharma Dey, R., Das Saha, K., Chakraborty, A., Chattopadhyay, S., Dey, S., & Chattopadhyay, D. (2014). Protective effect of coconut water concentrate and its active component shikimic acid against hydroperoxide mediated oxidative stress through suppression of NF-κB and activation of Nrf2 pathway. Journal of Ethnopharmacology, 155(1), 132–146. https://doi.org/10.1016/j.jep.2014.04.046

Nwangwa, E. K. (2012). The reno-protective effects of coconut water on the kidneys of diabetic wistar rats. J. Health Sci. https://doi.org/10.5923/j.health.20120201.01

O’Donnell, C., Tiwari, B. K., Cullen, P. J., & Rice, R. G. (2012). Ozone in Food Processing. John Wiley & Sons.

Pandiselvam, R., Sunoj, S., Manikantan, M. R., Kothakota, A., & Hebbar, K. B. (2017). Application and Kinetics of Ozone in Food Preservation. Ozone: Science & Engineering, 39(2), 115–126. https://doi.org/10.1080/01919512.2016.1268947

Paniwnyk, L. (2017). Applications of ultrasound in processing of liquid foods: A review. Ultrasonics Sonochemistry, 38, 794–806. https://doi.org/10.1016/j.ultsonch.2016.12.025

Pinto, I. F. D., Silva, R. P., Filho, A. de B. C., Dantas, L. S., Bispo, V. S., Matos, I. A., Otsuka, F. A. M., Santos, A. C., & Matos, H. R. (2015). Study of Antiglycation, Hypoglycemic, and Nephroprotective Activities of the Green Dwarf Variety Coconut Water (Cocos nucifera L.) in Alloxan-Induced Diabetic Rats. Journal of Medicinal Food, 18(7), 802–809. https://doi.org/10.1089/jmf.2014.0046

Prabha, V., Barma, R. D., Singh, R., & Madan, A. (2015). Ozone Technology in Food Processing: A Review. http://krishi.icar.gov.in/jspui/handle/123456789/35178

Prathapan, A., & Rajamohan, T. (2011). Antioxidant and Antithrombotic Activity of Tender Coconut Water in Experimental Myocardial Infarction. Journal of Food Biochemistry, 35(5), 1501–1507. https://doi.org/10.1111/j.1745-4514.2010.00471.x

Preetha, P. P., Devi, V. G., & Rajamohan, T. (2012). Hypoglycemic and antioxidant potential of coconut water in experimental diabetes. Food & Function, 3(7), 753–757. https://doi.org/10.1039/C2FO30066D

Preetha, P. P., Girija Devi, V., & Rajamohan, T. (2013). Comparative effects of mature coconut water (Cocos nucifera) and glibenclamide on some biochemical parameters in alloxan induced diabetic rats. Revista Brasileira de Farmacognosia, 23(3), 481–487. https://doi.org/10.1590/S0102-695X2013005000027

Prithviraj, V., Pandiselvam, R., Babu, A. C., Kothakota, A., Manikantan, M. R., Ramesh, S. V., Beegum, P. P. S., Mathew, A. C., & Hebbar, K. B. (2021). Emerging non-thermal processing techniques for preservation of tender coconut water. LWT, 149, 111850. https://doi.org/10.1016/j.lwt.2021.111850

Raghubeer, E. V., Phan, B. N., Onuoha, E., Diggins, S., Aguilar, V., Swanson, S., & Lee, A. (2020). The use of High-Pressure Processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water. International Journal of Food Microbiology, 331, 108697. https://doi.org/10.1016/j.ijfoodmicro.2020.108697

Rajamohan, T., & Archana, U. (2018). Nutrition and Health Aspects of Coconut. Em V. Krishnakumar, P. K. Thampan, & M. A. Nair (Orgs.), The Coconut Palm (Cocos nucifera L.)—Research and Development Perspectives (p. 757–777). Springer. https://doi.org/10.1007/978-981-13-2754-4_15

Rajashri, K., Roopa, B. S., Negi, P. S., & Rastogi, N. K. (2020). Effect of ozone and ultrasound treatments on polyphenol content, browning enzyme activities, and shelf life of tender coconut water. Journal of Food Processing and Preservation, 44(3), e14363. https://doi.org/10.1111/jfpp.14363

Rao, S. S., & Najam, R. (2016). Young coconut water ameliorates depression via modulation of neurotransmitters: Possible mechanism of action. Metabolic Brain Disease, 31(5), 1165–1170. https://doi.org/10.1007/s11011-016-9866-2

Ribeiro, M. de M., Valdramidis, V. P., Nunes, C. A., & de Souza, V. R. (2017). Synergistic effect of thermosonication to reduce enzymatic activity in coconut water. Innovative Food Science & Emerging Technologies. https://10.1016/j.ifset.2017.04.013

Richardson, P. (2001). Thermal Technologies in Food Processing. Elsevier.

Rojas, M. L., Trevilin, J. H., Funcia, E. dos S., Gut, J. A. W., & Augusto, P. E. D. (2017). Using ultrasound technology for the inactivation and thermal sensitization of peroxidase in green coconut water. Ultrasonics Sonochemistry, 36, 173–181. https://doi.org/10.1016/j.ultsonch.2016.11.028

Sanganamoni, S., Mallesh, S., Vandana, K., & Srinivasa Rao, P. (2017). Thermal Treatment of Tender Coconut Water – Enzyme Inactivation and Biochemical Characterization. International Journal of Current Microbiology and Applied Sciences, 6(5), 2919–2931. https://doi.org/10.20546/ijcmas.2017.605.331

Seow, E. K., Muhamed, A. M. C., Cheong-Hwa, O., & Tan, T. C. (2017). Composition and Physicochemical Properties of Fresh and Freeze-Concentrated Coconut (Cocos nucifera) Water. Journal Of Agrobiotechnology, 8(1), Art. 1.

Silva, G. A. da, & Landau, E. C. (2020). Evolução da produção de coco-da-baía (Cocos nucifera, Palmae). In: LANDAU, E. C.; SILVA, G. A. da; MOURA, L.; HIRSCH, A.; GUIMARAES, D. P. (Ed.). Dinâmica da produção agropecuária e da paisagem natural no Brasil nas últimas décadas: produtos de origem vegetal. Brasília, DF: Embrapa, 2020. v. 2, cap. 21, p. 681-705. http://www.alice.cnptia.embrapa.br/handle/doc/1122666

Silva, M. S. J., Júnior, D. L. de S., Braz, M. L. de O., Correia, C. da S., Mendes, R. de C., & Marques, A. E. F. (2020). Avaliação físico-química e microbiológica de águas de coco produzidas na cidade de Juazeiro do Norte, Ceará. Saúde (Santa Maria). https://doi.org/10.5902/2236583441265

Sun, D.-W. (Org.). (2005). Thermal Food Processing: New Technologies and Quality Issues. CRC Press. https://doi.org/10.1201/9781420027372

Tan, T.-C., Cheng, L.-H., Bhat, R., Rusul, G., & Easa, A. M. (2014). Composition, physicochemical properties and thermal inactivation kinetics of polyphenol oxidase and peroxidase from coconut (Cocos nucifera) water obtained from immature, mature and overly-mature coconut. Food Chemistry, 142, 121–128. https://doi.org/10.1016/j.foodchem.2013.07.040

Tao, Y., Sun, D.-W., Hogan, E., & Kelly, A. L. (2014). Chapter 1 - High-Pressure Processing of Foods: An Overview. Em D.-W. Sun (Org.), Emerging Technologies for Food Processing (Second Edition) (p. 3–24). Academic Press. https://doi.org/10.1016/B978-0-12-411479-1.00001-2

U.S. Food and Drug Administration. (2022). CFR - Code of Federal Regulations Title21.https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=50.25

Vasconcelos, B. M. de F., Oliveira, V. N. S. de, Silva, I. B. M., Soares, S. E., Filho, G. D. C., & Vaez, J. R. (2015). Qualidade físico-química da água de coco comercializada por ambulantes no município de Mossoró/RN. Blucher Chemistry Proceedings, 3(1), 483–493. https://www.proceedings.blucher.com.br/article-details/qualidade-fsico-qumica-da-gua-de-coco-comercializada-por-ambulantes-no-municpio-de-mossorrn-22105

Wang, C.-Y., Huang, H.-W., Hsu, C.-P., & Yang, B. B. (2016). Recent Advances in Food Processing Using High Hydrostatic Pressure Technology. Critical Reviews in Food Science and Nutrition, 56(4), 527–540. https://doi.org/10.1080/10408398.2012.745479

Yannam, S. K., Patras, A., Pendyala, B., Vergne, M., Ravi, R., Gopisetty, V. V. S., & Sasges, M. (2020). Effect of UV-C irradiation on the inactivation kinetics of oxidative enzymes, essential amino acids and sensory properties of coconut water. Journal of Food Science and Technology, 57(10), 3564–3572. https://doi.org/10.1007/s13197-020-04388-4

Yong, J. W. H., Ge, L., Ng, Y. F., & Tan, S. N. (2009). The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water. Molecules, 14(12), Art. 12. https://doi.org/10.3390/molecules14125144

Zhang, Y., Chen, W., Chen, H., Zhong, Q., Yun, Y., & Chen, W. (2020). Metabolomics Analysis of the Deterioration Mechanism and Storage Time Limit of Tender Coconut Water during Storage. Foods, 9(1), Art. 1. https://doi.org/10.3390/foods9010046

Downloads

Published

2023-04-19

How to Cite

Lemos, I. da M. L., Aniceto, A., & Teodoro, A. J. (2023). Coconut water: production, nutritional properties and health benefits. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(2), 971–993. https://doi.org/10.55905/oelv21n2-021

Issue

Section

Articles

Most read articles by the same author(s)