Evolution of the brazilian passenger car from 2003 to 2018: technology, price, emissions, market, and policy

Authors

  • Fernando Wesley Cavalcanti de Araújo
  • Guilherme Medeiros Soares de Andrade
  • Maurício Pereira Magalhães de Novaes Santos
  • Fábio Santana Magnani

DOI:

https://doi.org/10.55905/oelv21n7-100

Keywords:

Brazil, CO2 emission, engine capacity, passenger cars

Abstract

This study presents and discusses the evolution of the Brazilian fleet. It is studied the engine and vehicle characteristics (price, registration, engine capacity, maximum power, weight, length, and vehicle segment) from 2003 to 2018, and CO2 emission, urban and road fuel consumption from 2013 to 2018, highlighting changes and its possible reasons. In general, Brazilian cars became cheaper, heavier, and more powerful. Despite the increase in weight and power, the CO2 emission were always inside the government targets. Additionally, it is compared the Brazilian and European average car, and Brazilian cars were cheaper, lighter, shorter, less powerful, and less economical.

References

BRASIL. Brazilian Energy Balance. 2019.

WHO. Ambient air pollution: A global assessment of exposure and burden of disease. Geneva; 2016.

Beser Hugosson M, Algers S, Habibi S, Sundbergh P. Evaluation of the Swedish car fleet model using recent applications. Transp Policy. 2016;49:30–40.

Zervas E. Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 2. Segment analysis. Energy Policy. 2010;38(10):5426–41.

Zervas E. Analysis of CO2 emissions and of the other characteristics of the European market of new passenger cars. 3. Brands analysis. Energy Policy. 2010;38(10):5442–56.

Zervas E. Analysis of the CO2 emissions and of the other characteristics of the European market of new passenger cars. 1. Analysis of general data and analysis per country. Energy Policy. 2010;38(10):5413–25.

Kloess M, Müller A. Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria-A model based analysis 2010-2050. Energy Policy. 2011;39(9):5045–62.

Hao H, Geng Y, Sarkis J. Carbon footprint of global passenger cars: Scenarios through 2050. Energy. 2016;101:121–31.

Hassani A, Maleki A. Projection of passenger cars’ fuel demand and greenhouse gas emissions in Iran by 2050. Energy Convers Manag X. 2021;12:100126.

Xue M, Wang Q, Lin B Le, Tsunemi K. Mitigation of greenhouse gas and reactive nitrogen from the Japanese passenger car fleet. J Clean Prod. 2020;277:123440.

Mijailović R, Marković N, Pešić D, Vlajić J V. Evaluation of scenarios for improving energy efficiency and reducing exhaust emissions of a passenger car fleet: A methodology. Transp Res Part D Transp Environ. 2019;73:352–66.

Posada F, Facanha C. Brazil Passenger Vehicle Market Statistics. ICCT - The International Council on Clean Transportation. 2015.

MARKLINES. Brazil - Flash report, Sales volume - 2018 [Internet]. 2019. Available from: https://www.marklines.com/en/statistics/flash_sales/salesfig_brazil_2018

BRASIL. Intended Nationally Determined Contribution: Towards achieving the objective of the United Nations Framework Convention on Climate Change. Intend Natl Determ Contrib. 2015;9:6.

IBGE. Projeção da População [Internet]. 2019. Available from: https://www.ibge.gov.br/estatisticas-novoportal/so

WHO. Global Status Report on Road Safety. 2015.

Steg L. Car use: Lust and must. Instrumental, symbolic and affective motives for car use. Transp Res Part A Policy Pract. 2005;39(2-3 SPEC. ISS.):147–62.

Vasconcellos EA de. Risco no Trânsito, Omissão e Calamidade. Impactos do Incentivo à Motocicleta no Brasil. Annablume; 2013. 137 p.

Augustus de Melo C, De Martino Jannuzzi G, De Mello Santana PH. Why should Brazil to implement mandatory fuel economy standards for the light vehicle fleet? Vol. 81, Renewable and Sustainable Energy Reviews. Elsevier Ltd; 2018. p. 1166–74.

Poushter J. Car, bike or motorcycle? Depends on where you live [Internet]. 2015. Available from: http://www.pewresearch.org/fact-tank/2015/04/16/car-bike-or-motorcycle-depends-on-where-you-live/

Wilbert MD, Serrano ALM, Gonçalves R de S, Alves LS. Redução do imposto sobre produtos industrializados e seu efeito sobre a venda de automóveis no Brasil: uma análise do período de 2006 a 2013. Rev Contemp Contab. 2014;11(24):107–24.

Borges RES, Montibeler EE. Input–Output Matrix study: A theoretical frame to study the impact of Brazilian IPI reduction in final demand. EconomiA. 2014;15(2):228–41.

Bastin C, Szklo A, Rosa LP. Diffusion of new automotive technologies for improving energy efficiency in Brazil ’ s light vehicle fleet. Energy Policy. 2010;38(7):3586–97.

Andrade GMS de, Araújo FWC de, Santos MPM de N, Magnani FS. Standardized Comparison of 40 Local Driving Cycles: Energy and Kinematics. Energies. 2020 Oct 18;13(20):5434.

Andrade GMS de, Araújo FWC de, Santos MPM de N, Garnés SJ dos A, Magnani FS. Simple Methodology for the Development and Analysis of Local Driving Cycles Applied in the Study of Cars and Motorcycles in Recife, Brazil. Transp Res Rec J Transp Res Board. 2021 Feb 17;036119812199185.

Magnani FS, de Andrade GMS, Willmersdorf RB. Influence of mathematical simplifications on the dynamic and energetic performance of an engine/motorcycle integrated model. Int J Mech Eng Educ. 2018;46(2):138–57.

Magnani FS, Garcia Neto PD, Araujo FWC de, Hora AL dos A, Valença DA de A. Multimetric Analysis of a Simulated Mixed Traffic of Motorcycles and Automobiles : Flow , Energy , CO2 and Costs. Ing e Investig. 2021;41(2).

Isenstadt A, German J, Bubna P, Wiseman M, Venkatakrishnan U, Abbasov L, et al. Lightweighting technology development and trends in U.S. passenger vehicles. International Council for Clean Transportation. 2016.

FENABRAVE. Emplacamentos: Veículos Novos [Internet]. 2019 [cited 2019 Oct 26]. Available from: http://www3.fenabrave.org.br:8082/plus/modulos/listas/index.php?tac=indices-e-numeros&idtipo=1&layout=indices-e-numeros

ICCT. Passenger car CO2 emissions and fuel consumption, normalized to NEDC [Internet]. 2018 [cited 2019 Oct 26]. p. 1. Available from: https://www.theicct.org/sites/default/files/NEDC_CO2_cars_Apr2018_updated.pdf

Kodjak D. Policies to reduce fuel consumption, air pollution, and carbon emissions from vehicles in G20 nations. The International Council on Clean Transportation - ICCT. 2015.

Martins HR. The Brazilian Inovar-Auto Program and the WTO Dispute. Vol. 07. 2016.

MMA. Documento-base para subsidiar os diálogos estruturados sobre a elaboração de uma estratégia de implementação e financiamento da contribuição nacionalmente determinada do Brasil ao acordo de Paris. 2017.

Costa JOP da. Normalização para Inovação: O Programa Brasileiro de Etiquetagme Veícular (PBE-V). In: IPEA - Instituto de Pesquisa Econômica Aplicada, editor. Políticas de Inovação pelo Lado da Demanda no Brasil. First. Brasilia; 2017. p. 481.

ICCT. European Vehicle Market Statistics pocketbook 2019/2020. 2019.

Bank TW. GDP per capita, PPP (current international $). 2020.

Tsokolis D, Tsiakmakis S, Dimaratos A, Fontaras G, Pistikopoulos P, Ciuffo B, et al. Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol. Appl Energy. 2016;179:1152–65.

Cubito C, Millo F, Boccardo G, Di Pierro G, Ciuffo B, Fontaras G, et al. Impact of different driving cycles and operating conditions on CO2 emissions and energy management strategies of a Euro-6 hybrid electric vehicle. Energies. 2017;10(10).

Bank W. Gross Domestic Product per capita [Internet]. 2019 [cited 2019 May 21]. Available from: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD

Downloads

Published

2023-07-28

How to Cite

de Araújo, F. W. C., de Andrade, G. M. S., Santos, M. P. M. de N., & Magnani, F. S. (2023). Evolution of the brazilian passenger car from 2003 to 2018: technology, price, emissions, market, and policy. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(7), 7629–7659. https://doi.org/10.55905/oelv21n7-100

Issue

Section

Articles

Most read articles by the same author(s)