Safflower (carthamus tinctorius l., asteraceae) is an oilseed species with fast seed resource mobilization
DOI:
https://doi.org/10.55905/oelv21n7-076Keywords:
histochemistry, biochemistry, anatomy, oilseedAbstract
Safflower (Carthamus tinctorius L.) is a crop with wide commercial potential, due to the broad adaptability of cultivation and use conditions, but commercial initiatives are deficient. This scenario extends to academic research, which also focuses little on understanding the involved processes from the germination of its seeds to the correct management of adult plants. In this context, the current study seeks to identify the primary metabolites stored in the safflower seed and to evaluate how the mobilization of these reserves occurs during seed germination and seedling establishment. Safflower seeds of the cultivar S-351 produced in the experimental field of Universidade Federal de Jataí, from the second season of 2017/2018, were used. To obtain the seedlings, safflower seeds were sown in moistened sand with 60% retention capacity and kept at 25 °C. At 1, 2, 3, 4, 5, 8, 15 and 22 days after sowing, the seedlings were subjected to analysis of length and histological characterization of cotyledons, the latter of which also evaluated at 12 h after sowing. Biochemical (carbohydrate, protein, lipid and chlorophyll) and anatomical analyses were performed to assess reserve mobilization, both of which were evaluated at five germination times (12h, 3, 5, 8, 15 and 22 days after sowing). The data regarding the periods during reserve mobilization were subjected to regression analysis. The main source of reserve in safflower is lipids, followed by carbohydrates and proteins, with reductions of 37% for lipids, 3% for carbohydrates and 0.5% for proteins, during germination and seedling development. The mobilization of reserves of safflower seeds was accompanied by changes of cell features, which became vacualized and with multiple plastids, and by the synthesis of chlorophyll a, which peaked between 9 and 11 days after sowing, followed by the final reduction caused by senescence.
References
ABUD, H. F.; GONÇALVES, N. R.; REIS, R. D. G. E.; GALLÃO, M. I.; INNECCO, R. Morfologia de sementes e plântulas de cártamos. Revista Ciência Agronômica, v. 41, n. 2, p. 259-265, 2010.
AGUIRRE, M.; KIRGLE, E.; LEO, G.; EZQUER, I. Carbohydrate reserves and seed development: an overview. Plant Reprodution, v.31, p. 263-290, 2018.
ALASVANDYARI, F.; MAHDAVI, B.; HOSSEINI SHAHAB, M. Glycine betaine affects the antioxidant system and ion accumulation and reduces salinityinduced damage in safflower seedlings. Arch Biol Science, v. 69, n. 1, p. 139-147, 2017.
ALENCAR, N. L. M.; INNECCO, R.; GOMES-FILHO, E.; GALLÃO, M. I.; ALVAREZ-PIZARRO, J. C.; PRISCO, J. T. OLIVEIRA, A. Seed reserve composition and mobilization during germination and early seedling establishment of Cereus jamacaru D.C. ssp. jamacaru (Cactaceae). Anais da Academia Brasileira de Ciências, v. 84, n. 3, p. 823-832, 2012
AOAC. Association of Official Analytical Chemists. Offcial Methods of Analysis of the Association of Offcial Analytical Chemists. Arlington, U.S.A. 1990.
ATAÍDE, G. M.; LIMA e BORGES, E. E.; PICOLI, E. A. T.; LEITE FILHO, A. T.; FLORES, A. V. Alterações nas reservas de sementes de Melanoxylon brauna Schott. (Fabaceae Caesalpinoideae) durante a germinação em diferentes temperaturas. Revista Brasileira de Ciências Agrárias, [S. l.], v. 12, n. 3, p. 372-379, 2017.
BARBOSA, L. C. S.; ZUCHI, J.; SOUZA, M. S.; SOUZA, M. M. V.; ASSIS, N. P. C.; NASCIMENTO, K. J. T.; MACHADO, M. KUSTER, V. C.; SALES, J. F. ROCHA, D. I. Antioxidant enzyme activity and dynamics of reserve mobilization during germination and early seedling establishment of royal poinciana [Delonix regia (Bojer ex Hook.) Raf.].Trees, v. 37, p. 385-402, 2023.
BEWLEY, J. D.; BLACK, M. Seeds: physiology of development and germination. Springer Science & Business Media. 2013.
BEWLEY, J.D. Seed germination and dormancy. The plant cell, v. 9, n. 7, p. 1055, 1997.
BEWLEY, J.D.; BRADFORD, K.J.; HILHORST, H.W.M.; NONOGAKI, H. Seeds: physiology of development, germination and dormancy. Nova York: Springer, p. 392. 2013.
BONAMIGO, T.; FORTES, A. M.T.; PINTO, T. T.; GOMES, F. M.; SILVA, J.; BATURI, C. V. Interferência alelopática de folhas de cártamo sobre espécies oleaginosas. Biotemas, v. 26, n. 2, p. 1-8, 2013.
BRANDFORD, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, v. 72, n. 1-2, p. 248-254, 1976.
BRASIL. Ministério da Agricultura e da Reforma Agrária. Regras para análise de sementes. Brasília, p.395, 2009.
CAMARGOS, L. S.; SÁ SOARES, C. R. de; JUSTINO, G. C.; AGUIAR, L. F. Alocação de compostos nitrogenados de reserva durante a germinação de sementes de Canavalia brasiliensis. Biotemas, v. 26, n. 4, p. 1-10, 2013.
CARVALHO, N. M.; NAKAGAWA, J. Sementes: ciência, tecnologia e produção. 5a ed. Jaboticabal: FUNEP, p.590 , 2012.
CHAVES NETO, R.; RAMOS, S. M. B.; PEGO, M. F. F.; SANGLARD, D. A. Avaliação de acessos de cártamo adaptáveis às condições de déficit hídrico e seu potencial para programas de melhoramento. Acta Iguazu, v.9, n.1, p. 137-149, 2020
CIMINI, S.; LOCATO, V. VERGAUWEN, R.; PARADISO, A.; CECCHINI, C.; VANDENPOEL, L.; VERSPREET, J.; COURTIN, C. M.; D'EGIDIO, M. G.; ENDE, W. V. D.; GARA, L. D. Fructan biosynthesis and degradation as part of plant metabo-lism controlling sugar fuxes during durum wheat kernel maturation. Frontiers in Plant Science, v. 6, p. 1-10. 2015.
COELHO, V.S.; SILVA, G. Z.; SILVA, M. H. L.; Cold test on the vigor determination of Carthamus tinctorius L. seeds. Revista Brasileira de Ciências Agrárias, v.16, n.4, p. 1-8, 2021.
DE, D.N. Plant Cell Vacuoles: An Introduction. Csiro publishing, Australia, 2000.
DUBOIS, M.; GILLES, K.A.; HAMILTON, J.K.; REBERS, P.A.; SMITH, F. Colorimetric method for determination of sugars and related substances. Analytical chemistry, v. 28, n. 3, p. 350-356, 1956.
EMONGOR, V. Safflower (Carthamus tinctorius L.) the underutilizes and neglected crop: A review. Asian Journal of Plant Sciences, v. 9, n. 6, p. 299-306, 2010.
ERBAS, M. T.; YAŞAR K., ARIF Ş.; SANLI, A. Mobilization of seed reserves during germination and early seedling growth of two sunflower cultivars. Journal of Applied Botany and Food Quality, v. 89, p. 217 – 222, 2016.
GALLARDO, K.; THOMPSON, R.; BURSTIN, J Reserve accumulation in legume seeds. Comptes rendus biologies, v. 331, n. 10, p. 755-762, 2008.
GAMA, G. F., MACHADO, C. G., SILVA, G. Z. da, MORAES, A. L. C., SILVA, A. A. S., SILVA, I. M. H. L. Substrates and duration for conducting the safflower seed germination test. Científica, v. 47, n. 4, p. 426-433, 2019.
GIBON, Y.; PALACIOS, N.; STITT, M. Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiology, v. 142, n. 4, p. 1574-1588, 2006.
GRAHAM, I. A. Seed storage oil mobilization. Annual Review of Plant Biology, v. 59, p. 115-142, 2008.
HUANG, A.H.C. Structure of plant seed oil bodies. Current Opinion in Structural Biology, v. 4, n. 4, p. 493-498, 1994.
JOHANSEN, D. A. Plant microtechique. McGraw-Hill Book Company, Inc.; London, 1940.
KENNEDY, E. T.; BANERJEE, B.; PANOZZO, J.; MAHARAJAN, P. HUDSON, D.; SPANGENBERG, G.; HAYDEN, M. KANT, S. Dissecting Physiological and Ag-ronomic Diversity in Safflower Populations Using Proximal Phenotyping. Agriculture, v. 13, n. 620, p. 1-8, 2023.
LI Y.; HE N.; HOU J.; XU L.; LIU C.; ZHANG J.; WANG Q.; ZHANG X.; WU X. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Fron-tiers in Ecology and Evolution, v. 6, p. 1–10, 2018.
LIMA, É, R.; SILVA, R. A. D.; SOUSA, E. A. M.; AMURIM, A. I. L. C.; LICHS-TON, J. E.. Perfil dos agricultores familiares da agrovila canudos, Ceará-Mirim/RN, e aceitação do Carthamus tinctorius L. – oleaginosa promissora para biodiesel. Nature and Conservation, v. 12, n. 3, p. 17-24, 2019.
LIMA, R. B. S.; GONÇALVES, J. F. C.; PANDO, S. C.; FERNANDES, V.; SAN-TOS, A. L. W. Primary metabolite mobilization during germination in rosewood (Aniba rosaedora Ducke) seeds. Revista Árvore, v. 32, n. 19-25, 2008.
LOPES, L. S.; GALLÃO, M. I.; BERTINI, C. H. C. M. Mobilisation of reserves during germination of Jatropha seeds. Revista Ciência Agronômica, v. 44, n. 2, p. 371-378, 2013.
MAGALHÃES, S. R.; BORGES, E. E. L.; BERGER, A. P. A. Seed reserve mobilization in the embryonic axis and cotyledons of Schizolobium parahyba (Vell.) SF Blake during germination. Ciência Florestal, v. 20, n. 4, p. 589-595, 2010.
MCMANUS, J.F.A. Histological and histochemical uses of periodic acid. Stain technology, v. 23, n. 3, p. 99-108, 1948.
MENA-ALÍ, J. I.; ROCHA, O.J. Selective seed abortion affects the performance of the offspring in Bauhinia ungulata. Annals of botany, v. 95, n. 6, p. 1017-1023, 2005.
O’BRIEN, T.P.; FEDER, N.; MCCULLY, M.E. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, v. 59, n. 2, p. 368-373, 1964.
OLIVEIRA, L.M.; CARVALHO, M.L.M.; DAVIDE, A.C. Utilizing X-ray tests to evaluate the quality of canafistula seeds (Peltophorum dubium (Sprengel) Taubert). Revista Brasileira de Sementes, v. 25, n. 1, pp. 116-120, 2003.
RAIJOU, L.; DUVAL, M.; GALLARDO, K.; CATUSSE, J.; BALLY, J.; JOB, C.; JOB, D. Seed germination and vigor. Annual review of plant biology, v. 63, pp. 507-533, 2012.
REALE, L.; RICCI, A.; FERRANTI, F.; TORRICELLI, R.; VENANZONI, R.; FAL-CINELLI, M. Cytohistological Analysis and Mobilization of Reserves in Jatropha cur-cas L. Seed. Crop Science, v. 52, p. 830-835, 2012.
REN, C.; BILYEU, D.; ROBERTS, C.A.; BEUSELINCK, P.R. Factors regulating the mobilization of storage reserves in soybean cotyledons during post-germinative growth. Seed Science and Technology, v. 35, n. 2, pp. 303-317, 2007.
SANTOS, H.P.; BUCKERIDGE, M.S.S. The role of the storage carbon of cotyledons in the establishment of seedlings of Hymenaea courbaril under different light conditions. Annals of Botany, v. 94, n. 6, pp. 819-830, 2004.
SORIANO, D.; OROZCO-SEGOVIA, A.; MÁRQUEZ-GUZMÁN, J.; KITAJIMA, K.; GAMBOA-DE-BUEN, A.; HUANTE, P. Seed reserve composition in 19 tree species of a tropical deciduous forest in Mexico and its relationship to seed germination and seedling growth. Annals of Botany, v. 107, n. 6, pp. 939-951, 2011.
STREIT, N. M.; CANTERLE, L P.; CANTO, M. W.; HECKTHEUER, L. H. H. As Clorofílas. Ciência Rural, v.35, n.3, p.748-755, 2005
SUDA, C. N. K.; GIORGINI, J. F. Seed reserve composition and mobilization during germination and early seedling development of Euphorbia heterophylla. Brazilian Journal of Plant Physiology, v. 12, p. 226-245, 2000.
TAN-WILSON, A. L.; WILSON, K. A. Mobilization of seed protein reserves. Physiologia Plantarum, v. 145, n. 1, pp. 140-153, 2012.
THEOUDOULOU, F. L.; EASTMOND, P. J. Seed storage oil catabolism: a story of give and take. Current Opinion in Plant Biology, v.15, n.3, pp.322-328, 2012.
VERMA, G.; MISHRA, S.; SANGWAN, N.; SHARMA, S. Reactive oxygen species mediate axis-cotyledon signaling to induce reserve mobilization during germination and seedling establishment in Vigna radiata. Journal Planty Physiol, v. 20, p. 79-88, 2015.
VIDAL, C. B. Dichroism in collagen bundles stained with Xylidine-Ponceau 2R. In: Annales D'histochimie, pp. 289-296, 1970.
VOZNESENSKAYA, E. V.; FRANCESCHI, V. R.; ARTYUSHEVA, E. G.; BLACK, C. C.; PYANKOV, V. I.; EDWARDS, G. E. Development of the C4 photosynthetic apparatus in cotyledons and leaves of Salsola richteri (Chenopodiaceae). Int. J. Plant Sci., v. 164, n. 4, p. 471–487, 2003.
WELLBURN, A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of plant physiology, v. 144, n. 3, p. 307-313, 1994.
ZHOU, L.; LU, L.; CHEN, C.; ZHOU, T.; WU, Q.; WEN, F.; CHEN, J.; PRITCHARD, H. W.; PENG, C.; PEI, J.; YAN, J. Comparative changes in sugars and lipids show evidence of a critical node for regeneration in safflower seeds during aging. Frontiers in Plant Science, v. 13, p. 1-18, 2022.
ZIENKIEWICZ, A.; JIMÉNEZ-LÓPEZ, J.C.; ZIENKIEWICZ, K.; ALCHÉ, J. D.; RODRÍGUEZ-GARCÍA, M. I. Development of the cotyledon cells during olive (Olea europaea L.) in vitro seed germination and seedling growth. Protoplasma, V. 248, P. 751-765, 2011.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.