Forecasting models for the electricity consumption of the cement industry in Brazil

Authors

  • Rodrigo Felipe da Silva Mendes
  • Kleyton da Costa
  • Felipe Leite Coelho da Silva
  • Josiane da Silva Cordeiro Coelho
  • Carlos Andrés Reyna Vera-Tudela
  • Renan Vicente Pinto

DOI:

https://doi.org/10.55905/oelv21n7-011

Keywords:

forecasting, cement industry, time series, electricity consumption

Abstract

The consumption of electric energy in the Brazilian industrial sector has been investigated over the past few years. This interest is related to sector development, energy planning, and energy efficiency. Thus, forecasting models are important for decision-making. The objective of this work is to compare different forecasting models applied to monthly data on electric energy consumption in the cement industry in Brazil. Therefore, the Holt-Winters method, the Seasonal ARIMA model, the dynamic linear model, and the autoregressive neural network model were used. Through the considered accuracy metrics, the Seasonal ARIMA model showed the best predictive performance for the analyzed period.

References

Adya, M. e Collopy, F. (1998). How effective are neural networks at forecasting and prediction? a review and evaluation. Journal of Forecasting, 17:481–495.

Ardakani, F. J. e Ardehali, M. M. (2014). Novel effects of demand side management data on accu- racy of electrical energy consumption modeling and long-term forecasting. Energy Conversion and Management, 78:745–752.

Bianco, V., Manca, O., e Nardini, S. (2009). Electricity consumption forecasting in italy using linear regression models. Energy, 34(9):1413–1421. ISSN 0360-5442.URL https://www.sciencedirect.com/science/article/pii/S0360544209002539.

Box, G. E. P., Jenkins, G. M., e Reinsel, G. C. (2015). Time Series Analysis: Forecasting and Control. Prentice-Hall.

EPE. Empresa de Pesquisa Energe´tica (2023). Séries estudos de energia, anuário estatístico de energia elétrica. URL https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/anuario-estatistico-de-energia-eletrica.

Fan, S. e Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive model. IEEE Transactions on Power Systems, 27:134–141.

Granger, C. W. J. e Newbold, P. (1977). Forecasting Economic Time Series. Academic Press, New York.

Huang, Y.-H., Chang, Y.-L., e Fleiter, T. (2016). A critical analysis of energy efficiency im- provement potentials in taiwan’s cement industry. Energy Policy, 96:14–26. URL https://www.journals.elsevier.com/energy-policy.

Hyndman, R. J. e Athanasopoulos, G. (2018). Forecasting: principles and perace´tica. OTexts.

Sadownik, R. e Barbosa, E. P. (1999). Short-term forecasting of industrial electricity consumption in brazil. Journal of Forecasting, 18:215–224.

Santana, A. L., Conde, G. B., Rego, L. P., Rocha, C. A., Cardoso, D. L., Costa, J. C., Bezerra, U. H., e Francs, C. R. (2012). Predict decision support system for load forecasting and inference: A new undertaking for brazilian power suppliers. Electrical Power and Energy Systems, 38:33–45.

Silva, F. L. C., Souza, R. C., Oliveira, F. L. C., Lourenco, P. M., e Calili, R. F. (2018). A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Applica- tion to pulp and paper sector in Brazil. Energy, 144:1107 – 1118. ISSN 0360-5442. URL http://www.sciencedirect.com/science/article/pii/S0360544217321217.

Silva, F. L., Cyrino Oliveira, F. L., e Souza, R. C. (2019). A bottom-up bayesian extension for long term electricity consumption forecasting. Energy, 167:198–210. ISSN 0360-5442. URL https://www.sciencedirect.com/science/article/pii/S0360544218321984.

SINC. Sindicato Nacional da Indu´stria do Cimento (2021). Relato´rios anuais de 2001 a 2022. URL http://snic.org.br/numeros-relatorio-anual.php.

Taylor, J. W. e Buizza, R. (2003). Using weather ensemble predictions in electricity demand fore- casting. International Journal of Forecasting, 19:57–70.

Taylor, J. e Mcsharry, P. (2007). Short-term load forecasting methods: An evaluation based on european data. Power Systems, IEEE Transactions on, 22:2213 – 2219.

West, M. e Harrison, J. (1997). Bayesian forecasting and dynamic models. Springer, New York. Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3):324–342. URL https://EconPapers.repec.org/RePEc:inm:ormnsc:v:6:y:1960:i:3:p:324-342.

Downloads

Published

2023-07-04

How to Cite

Mendes, R. F. da S., da Costa, K., da Silva, F. L. C., Coelho, J. da S. C., Vera-Tudela, C. A. R., & Pinto, R. V. (2023). Forecasting models for the electricity consumption of the cement industry in Brazil. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(7), 6016–6031. https://doi.org/10.55905/oelv21n7-011

Issue

Section

Articles