Magnetic properties of the mixed ferrites MnZnFe2O4 and MnAl-Fe2O4: A comparative study

Authors

  • Gabriel Burlandy Mota de Melo
  • Maria Lúcia Netto Grillo
  • Daniele Gomes Carvalho
  • Ronaldo Sergio de Biasi
  • André Ben-Hur da Silva Figueiredo

DOI:

https://doi.org/10.55905/oelv22n5-118

Keywords:

Sol-Gel Process, Nanoparticles, Ferrites, Magnetic Properties

Abstract

Nanosized particles of Mn1-xZnxFe2O4, where 0 ≤ x  1, and MnAlxFe2-xO4, where 0 ≤ x  2, were synthesized by the sol–gel combustion method and the magnetic properties of these compounds were investigated and compared. The saturation magnetization of the samples of Mn1-xZnxFe2O4 was taken from the literature and the saturation magnetization of the samples of MnAlxFe2-xO4 was estimated from the cation distribution; ferromagnetic resonance spectra were used to determine the magnetocrystalline anisotropy. The results show that the saturation magnetization and the magnetocrystalline anisotropy of Zn- and Al- doped MnFe2O4 vary over a wide range, a result that could be useful for practical applications of these materials.

References

K. Zipare, J. Dhumal, S. Bandgar, V. Mathe and G. Shahane, Superparamagnetic Manganese Ferrite Nanoparticles: Synthesis and Magnetic Properties, J. Nanosci. Nano-eng. 1 (2015) 178.

R.S. de Biasi and L.H.G. Cardoso, A simple model for the magnetocrystalline aniso-tropy in mixed ferrite nanoparticles, Physica B 407 (2012) 3893.

R.S. de Biasi and H.F. Santos, Cation distribution, saturation magnetization and magnetocrystalline anisotropy of mixed ferrite NiAlxFe2-xO4 nanoparticles, Ceram. Int. 43 (2017) 4557.

R.S.de Biasi and R.D.S. Lopes, Magnetocrystalline anisotropy of NiCoFe2O4 nano-particles, Ceram. Int. 42 (2016) 9315.

S.A.V. Prasad, M. Deepty, P.N. Ramesh, G. Prasad, K. Srinivasarao, Ch. Srinivas, K.V. Babu, E.R. Kumar, N. K. Mohan and D.L. Sastry, Synthesis of MFe2O4 (M=Mg2+, Zn2+, Mn2+) spinel ferrites and their structural, elastic and electron magnetic resonance properties, Ceram. Int. 44 (2018) 10517.

M. Deepty, Ch. Srinivas, K.V. Babu, E.R. Kumar, S.S. Meena, C.L. Prajapat, N.K. Mohang and D.L. Sastry, Structural and electron spin resonance spectroscopic studies of MnxZn1-xFe2O4 (x=0.5, 0.6, 0.7) nanoferrites synthesized by sol-gel auto combustion me-thod, J. Magn. Magn. Mat. 466 (2018) 60.

D.L. Griscom, Ferromagnetic resonance of precipitated phases in natural glasses, J. Non-Cryst. Solids 67 (1984) 81.

G. Padmapriya, A. Manikandan, V. Krishnasamy, S.K. Jaganathan and S.A. Antony, Enhanced Catalytic Activity and Magnetic Properties of Spinel MnxZn1−xFe2O4 (0.0 ≤ x ≤ 1.0) Nano-Photocatalysts by Microwave Irradiation Route, J. Supercond. Nov. Magn. 29 (2016) 2141.

G.B.M. Melo, M.L.N. Grillo and R.S. de Biasi, Synthesis and magnetic properties of CoAlFe2O4 nanoparticles, Ceram. Int. 44 (2018) 22744.

S.M. Attia, Study of Cation Distribution of Mn-Zn Ferrites, Egypt. J. Solids 29 (2006) 329.

U. Hålenius, F. Bosi and H. Skogby, Galaxite, MnAl2O4, a spectroscopic standard for tetrahedrally coordinated Mn2+ in oxygen-based mineral structures, Am. Mineral. 92 (2007) 1225.

Published

2024-05-17

How to Cite

Melo, G. B. M. de, Grillo, M. L. N., Carvalho, D. G., Biasi, R. S. de, & Figueiredo, A. B.-H. da S. (2024). Magnetic properties of the mixed ferrites MnZnFe2O4 and MnAl-Fe2O4: A comparative study. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(5), e4718. https://doi.org/10.55905/oelv22n5-118

Issue

Section

Articles

Most read articles by the same author(s)