Uso de diferentes Bacillus spp. promotores de crescimento vegetal associado com adubação nitrogenada na cultura do milho

Authors

  • André Shigueyoshi Nakatani
  • Isabela Martins Bueno Gato
  • Itacir Eloi Sandini

DOI:

https://doi.org/10.55905/oelv22n3-105

Keywords:

promoção de crescimento de planta, nitrogênio, produtividade de grãos, inoculação, Zea mays

Abstract

Há um crescente interesse em otimizar os efeitos positivos da associação entre bactérias promotoras de crescimento e a cultura do milho (Zea mays) visando reduzir o uso de fertilizantes nitrogenados. Nesse contexto, investigamos o uso de Bacillus licheniformis e Bacillus aryabatthai, bem como o consórcio dessas duas bactérias na cultura do milho. Os experimentos de campo foram realizados na safra 2020/2021 e na 2ª safra de 2021 em seis locais do Brasil. Foram comparados os tratamentos controle e nitrogenado completo (100% do N) com a aplicação de Bacillus licheniformis CCT8084, Bacillus aryabhattai CCT8087 e o consórcio desses Bacillus e redução de 25% do N. Os resultados mostraram que, comparado ao controle, os diferentes Bacillus aumentaram o teor de N nas folhas ou nos grãos na maioria das áreas, aumentaram a massa vegetal e produtividade em todos os locais. Adicionalmente, os Bacillus associados a redução de 25% do N proporcionaram desenvolvimento de plantas e produtividades equivalentes às obtidas com aplicação da adubação nitrogenada completa.

References

AHEMAD, M.; KIBRET, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University. Science, v. 26, n. 1, p. 1–20, 2014. https://www.sciencedirect.com/science/article/pii/S1018364713000293

AHMAD, M. et al. Potential of phosphate solubilizing Bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pak. J. Agric. Sci, v. 56, p. 283–289, 2019. https://www.researchgate.net/publication/332269045_Potential_of_phosphate_solubilizing_bacillus_strains_for_improving_growth_and_nutrient_uptake_in_mungbean_and_maize_crops

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711–728, 2013.

AMIN, M. E. M. H. Effect of different nitrogen sources on growth, yield and quality of fodder maize (Zea mays L.). Journal of the Saudi Society of Agricultural Sciences, v. 10, n. 1, p. 17–23, 2011. https://www.sciencedirect.com/science/article/pii/S1658077X10000044

ANSARI, R. A. et al. Safiuddin Siderophores: Augmentation of soil health and crop productivity. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics in Agroecosystem, p. 291–312, 2017. https://link.springer.com/chapter/10.1007/978-981-10-4059-7_15

BESEN, M. R. et al. Produtividade de milho e retorno econômico em sistema integrado de produção com doses de nitrogênio. Revista de Ciências Agroveterinárias, v. 19, n. 1, p. 94–103, 2020. https://www.periodicos.udesc.br/index.php/agroveterinaria/article/view/14311/pdf

CADORE, R. et al. Híbridos de milho inoculados com Azospirillum brasilense sob diferentes doses de nitrogênio. Revista brasileira de milho e sorgo, v. 15, n. 3, p. 398, 2017. https://rbms.abms.org.br/index.php/ojs/article/view/587/pdf

GARCIA, J. A. L. et al. Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie, v. 24, p. 69–176, 2004. https://hal.science/hal-00886016/document

GITTI, D. C.; RIZZATO, L. A. Manejo da Nutrição e seus Efeitos na Produtividade do Milho Safrinha. Tecnologia e produção, 2018.

GUTIERREZ-MANERO, F. J. et al. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, v. 111, n. 2, p. 206–211, 2001. https://onlinelibrary.wiley.com/doi/epdf/10.1034/j.1399-3054.2001.1110211.x

HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and fertility of soils, v. 49, n. 7, p. 791–801, 2013. https://www.bashanfoundation.org/contributions/Hungria-M/2013.-Hungria-BFS.pdf

HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the trophics. Ecosystems & Environment, v. 221, p. 125–131, 2016. https://ui.adsabs.harvard.edu/abs/2016AgEE..221..125H/abstract

HUSSAIN, A. et al. Plant-growth-promoting Bacillus and Paenibacillus species improve the nutritional status of Triticum aestivum L. PloS one, 15(12): e0241130, 2020. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241130

JUNIOR, A. F. C. et al. Bacillus subtilis como inoculante promotor de crescimento vegetal em soja. Diversitas Journal, v. 7, n. 1, p. 0001–0016, 2021. https://diversitasjournal.com.br/diversitas_journal/article/view/2071/1621

KAVAMURA, V. N. Bactérias associadas às cactáceas da Caatinga: Promoção de crescimento de plantas sob estresse hídrico. [s.l.] Escola Superior de Agricultura “Luiz de Queiroz”, 2012.

KAVAMURA, V. N. et al. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological research, v. 168, n. 4, p. 183–191, 2013. https://repositorio.usp.br/item/002343139

KHOSO, M. A. et al. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress, v. 11, p. 2667–2064, 2024. https://www.sciencedirect.com/science/article/pii/S2667064X23002087?via%3Dihub

LEE, S.; KA, J.O.; SONG, H. G. Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. The Journal of Microbiology, v. 50, n. 1, p. 45–49, 2012. https://pubmed.ncbi.nlm.nih.gov/22367936/

LEE, Y.; LEE, W. S.; KIM, S. H. Hormonal regulation of stem cell maintenance in roots. Journal of experimental botany, v. 64, n. 5, p. 1153–1165, 2013. https://academic.oup.com/jxb/article/64/5/1153/631080

LIM, J.; KIM, S. Introduction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. PlantPathol. J, v. 29, p. 201–208, 2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174774/

LOON, L. C. Plant Responses to Plant Growth-Promoting Rhizobacteria. European Journal of Plant Pathology, v. 119, p. 243–254, 2007. https://link.springer.com/article/10.1007/s10658-007-9165-1

MAHDI, I. et al. Plant Growth Enhancement using Rhizospheric Halotolerant Phosphate Solubilizing Bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 Isolated from Chenopodium quinoa Willd. Microorganisms, v. 8, n. 6, p. 948, 2020. https://www.mdpi.com/2076-2607/8/6/948

MAPA (Ministério da Agricultura, Pecuária e Abastecimento). Instrução Normativa nº 13, de 25 de março de 2011. MAPA, Brazil, 2011. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-13-de-24-03-2011-inoculantes.pdf/view

MAY, A. et al. Induction of drought tolerance by inoculation of Bacillus aryabhattai on sugarcane seedlings. Cientifica, v. 47, n. 4, p. 400, 2019. https://cientifica.dracena.unesp.br/index.php/cientifica/article/view/1258

MEHMOOD, S. et al. Alleviation of salt stress in wheat seedlings via multifunctional Bacillus aryabhattai PM34: An in-vitro study. Sustainability, v. 13, n. 14, p. 8030, 2021. https://www.mdpi.com/2071-1050/13/14/8030

MONDANI, F. et al. Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) under water deficit stress condition. Agricultural water management, v. 213, p. 707–713, 2019. https://ideas.repec.org/a/eee/agiwat/v213y2019icp707-713.html

MOHANTY, P. et al. Insight into the role of PGPR in sustainable agriculture and environment. Frontiers in sustainable food systems, v. 5, 2021. https://www.frontiersin.org/articles/10.3389/fsufs.2021.667150/full

OLIVEIRA, S. M. et al. Understanding N timing in corn yield and fertilizer N recovery: An insight from an isotopic labeled-N determination. PLoS One, v. 2, p. 1–14, 2018. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192776

PARK, Y. G. et al. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PloS One, 12(3), e0173203, 2017. https://pubmed.ncbi.nlm.nih.gov/28282395/

PRASHANTH, S.; MATHIVANAN, N. Growth promotion of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Arch Phytopathol Plant Protect, v. 43, p. 191–208, 2010. https://ui.adsabs.harvard.edu/abs/2010ArPPP..43..191P/abstract

PROBANZA, A. et al. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied soil ecology: a section of Agriculture, Ecosystems & Environment, v. 20, n. 2, p. 75–84, 2002. https://www.sciencedirect.com/science/article/abs/pii/S0929139302000070

RAWAT, P.; SHANKHDHAR, D.; SHANKHDHAR, S. C. Synergistic impact of phosphate solubilizing bacteria and phosphorus rates on growth, antioxidative defense system, and yield characteristics of upland rice (Oryza sativa L). J. Plant Growth Regul., v. 41, p. 2449–2461, 2022. https://www.researchgate.net/publication/353562843_Synergistic_Impact_of_Phosphate_Solubilizing_Bacteria_and_Phosphorus_Rates_on_Growth_Antioxidative_Defense_System_and_Yield_Characteristics_of_Upland_Rice_Oryza_sativa_L

SAHARAN, B. S.; VERMA, S. Potential plant growth promoting activity of Bacillus licheniformis UHI (II) 7. Int. J. Microbial Res. Technol, v. 2, p. 22–27, 2014. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e071a6cf7ec0fd882543670e3758709f70e38f3f

SANDINI, I. E. et al. Seed inoculation with Pseudomonas fluorescens promotes growth, yield and reduces nitrogen application in maize. Int. J. Agric. Biol., v. 22, p. 1369–1375, 2019. https://www.bashanfoundation.org/contributions/Hungria-M/41.%202019Seed%20Inoculation%20Hungria.pdf

SANTOS, L. P. D. et al. Doses de Nitrogênio na Cultura do Milho para Altas Produtividades de Grãos. Revista brasileira de milho e sorgo, v. 12, n. 3, p. 270–279, 2013. https://rbms.abms.org.br/index.php/ojs/article/view/449

SHARMA, S. B. et al. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, v.2, p. 587, 2013. https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-587

SHEIRDIL, R. A. et al. Exploring Potential Soil Bacteria for Sustainable Wheat (Triticum aestivum L.) Production. Sustainability. [s.l: s.n.]. https://www.mdpi.com/2071-1050/11/12/3361

SHULTANA, R. et al. Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PloS one, v. 15, n. 9, p. e0238537, 2020. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238537

SICHOCKI, D. et al. Resposta do Milho Safrinha à Doses de Nitrogênio e de Fósforo. Revista brasileira de milho e sorgo, v. 13, n. 1, p. 48–58, 2014. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/106225/1/Resposta-milho.pdf

SILVA, F.C. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF:EMBRAPA, 2009. https://www.infoteca.cnptia.embrapa.br/handle/doc/330496

STATSOFT, INC. STATISTICA (data analysis software system), version 7, 2004.

TSEGAYE, Z. et al. Plant growth-promoting rhizobacterial inoculation to improve growth, yield, and grain nutrient uptake of teff varieties. Front. Microbiol. 13:896770, 2022. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.896770/full

VAZQUEZ, P. et al. Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon. Biol Fertil Soils, v. 30, p. 460–468, 2000. https://link.springer.com/article/10.1007/s003740050024

WANG, B. et al. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, v. 112, n. 15, p. 4821–4826, 2015. https://pubmed.ncbi.nlm.nih.gov/25831515/

YAN, P. et al. A high plant density reduces the ability of maize to use soil nitrogen. PloS One, v. 12, p. e0172717, 2017. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172717

ZAGO, V. C. P.; DE-POLLI, H.; RUMJANEK, N. G. Pseudomonas spp. Fluorescentes - Bactérias Promotoras de Crescimento de Plantas e Biocontroladoras de Fitopatógenos em Sistemas de Produção Agrícola Empresa. Seropédica: Embrapa Agrobiologia, 2000.

Published

2024-03-13

How to Cite

Nakatani, A. S., Gato, I. M. B., & Sandini, I. E. (2024). Uso de diferentes Bacillus spp. promotores de crescimento vegetal associado com adubação nitrogenada na cultura do milho. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(3), e3733. https://doi.org/10.55905/oelv22n3-105

Issue

Section

Articles

Most read articles by the same author(s)