Parameters identification associated with artichoke pâté thermal diffusivity via finite volume element method


  • Danúbia Lucas Meira Gontijo
  • Rafael Yuri Medeiros Barbosa
  • Rodrigo Sislian
  • Rubens Gedraite



food sterilization, mathematical model, thermal diffusivity


The sterilization operation traditionally used in the food industry has been known for a long time and is still widely used in the conservation of canned food products. Knowledge of the value of the heat transport property thermal diffusivity is very important to define the required heat treatment time and to allow better control of the process in the face of variations in the temperature of the autoclave. This work presents the mathematical model that was developed and tested in the matlab/simulink™ application to estimate the value of thermal diffusivity. The model was used to simulate the temperature behavior of the studied food product based on a value identified for the thermal diffusivity. The results obtained were validated by comparison with those available in the literature and showed good adherence to the latter, with deviations of less than 5ºC in the worst case.


AKTERIAN, S.G. On-line control strategy for compensating for arbitrary deviations in heating-medium temperature during batch thermal sterilization processes. Journal of Food Engineering, v.39, p. 1- 7, 1999.

AZAR, A. B.; RAMEZAN, Y.; KHASHEHCHI, M. Numerical simulation of conductive heat transfer in canned celery stew and retort program adjustment by computational fluid dynamics (CFD). Int. J. Food Eng. 2020; 16(9): 20190303.

BERTELI, M.N.; BERTO, M. I.; VITALI, A. DE A. (2013). Aplicabilidade do método de Ball para o cálculo da letalidade de processos de esterilização em autoclaves a vapor desaeradas por água. Brazilian Journal of Food Technology, 16(3), 243–252.

CZÉL, B.; WOODBURY, K.A.; GRÓF, G. Simultaneous estimation of temperature-dependent volumetric heat capacity and thermal conductivity functions via neural networks. International Journal of Heat and Mass Transfer, v. 68, 2014.

DEAK, T.; MOHÁCKSI-FARKAS, C. (2023). Food Safety Management: A Practical Guide for the Food Industry. In: Veslemøy Andersen, Huub L. M. Lelieveld, Yasmine Motarjemi (eds). Capter 20: Thermal Treatment. Elsevier Inc. Índia.

FABBRI, A.; CEVOLI, C.; TRONCOSO, R. Moisture diffusivity coefficient estimation in solid food by inversion of a numerical model. Food Research International, v. 56, 2014.

GEDRAITE, R. (1999). Desenvolvimento e implementação de algoritmo computacional para garantir um determinado nível de letalidade acumulada para microrganismos presentes em alimentos industrializados. 1999, São Paulo. Dissertação (Mestrado) - Escola Politécnica, Universidade de São Paulo.

BARBOSA, R.Y.M.; SANTANA, A.A; GEDRAITE, R. Parameters identification associated with textured soy protein thermal diffusivity via high-order numerical methods. Journal of Agricultural Science and Biotechnology. 1(3), 182-189, 2023.

GONTIJO, D.L.M.; BARBOSA, R.Y.M.; GEDRAITE, R. (2022). Controle inferencial para esterilização de alimentos. In: Paniagua, C.E.S. (organizador). Engenharia química: Desenvolvimento de novos processos e produtos 2. Atena Editora, Ponta Grossa.

GREIBY, I.; MISHRA, D.K.; DOLAN, K.D. Inverse method to sequentially estimate temperature-dependent thermal conductivity of cherry pomace during nonisothermal heating. Journal of Food Engineering, v. 127, 2014.

HOLDSWORTH, S.D.; SIMPSON, R. Thermal processing of packaged food.

Springer International Publishing AG, Switzerland. 2016.

LAROUSSE, J.; BROWN, B.E. Food Canning Technology. New York, Wiley - VCH Inc,1997.

MARIANI, V.C.; LIMA, A.G.B.; COELHO, L.S. Apparent thermal diffusivity estimation of the banana during drying using inverse method. Journal of Food Engineering, v. 85, n. 4, 2008.

MENDONÇA, S.L.R.; FILHO, C.R.B.; SILVA, Z.E. Transient conduction in spherical fruits: Method to estimate the thermal conductivity and volumetric thermal capacity. Journal of Food Engineering, v. 67, n. 3, 2005.

MITTAL, G. S. Computadorized control systems in the food industry. New York, Marcel Dekker, Inc., 1997.

MOHAMED, I.O. Determination of cold spot location for conduction-heated canned foods using an inverse approach. International Journal of Food Processing Technology, v. 2, n. 2, 2015.

MOHAMED, I.O. Development of a simple and robust inverse method for determination of thermal diffusivity of solid foods. Journal of Food Engineering, v. 101, n. 1, 2010.

MOHAMED, I.O. Simultaneous estimation of thermal conductivity and volumetric heat capacity for solid foods using sequential parameter estimation technique. Food Research International, v. 42, n. 2, 2009.

MURAMATSU, Y.; GREIBY, I.; MISHRA, D.K.; DOLAN, K.D. Rapid inverse method to measure thermal diffusivity of low-moisture foods. Journal of Food Science.Volume 82, Issue2. February 2017, pp. 420-428.

NAYAK, J.; VAKULA, K.; DINESH, P.; NAIK, B.; PELUSI, D. Intelligent food processing: Journey from artificial neural network to deep learning. Computer Science Review 38 (2020) 100297.

NORONHA, J. F.; LOEY, A. V.; HENDRICKX, M.; TOBBACK, P. An empirical equation for the description of optimum variable retort temperature profiles that maximize surface quality retention in thermally processed foods. Journal of Food Processing and Preservation, v. 20, p. 251 - 264, 1996.

OHLSSON, T.; BENGTSSON, N. Minimal processing technologies in the food industry. Cambridge, CRC Press, 2000.

SILVA, W.P.; PRECKER, J.W.; SILVA, C.M.D.P.S.; GOMES, J.P. Determination of effective diffusivity and convective mass transfer coefficient for cylindrical solids via analytical solution and inverse method: Application to the drying of rough rice. Journal of Food Engineering, v. 98, n. 3, 2010.

SILVA, W.P.; MEDEIROS, M.S.; GOMES, J.P.; SILVA, C.M.D.P.S. Improvement of methodology for determining local thermal diffusivity and heating time of green coconut pulp during its pasteurization. Journal of Food Engineering, 285 (2020),

SIMPSON, R.; JIMÉNEZ, D.; ALMONACID, S.; NUÑEZ, H.; PINTO, M.; RAMÍREZ, C.; VEGA-CASTRO, O.; FUENTES, L.; ÂNGULO, A. Assessment and outlook of variable retort temperature profiles for the thermal processing of packaged foods: plant productivity, product quality, and energy consumption. Journal of Food Engineering, Volume 275, June 2020,[email protected].

TANER, A.H.; BRIGNELL, J.E. Virtual instrumentation and intelligent sensors. Sensors and Actuators, n. 61, p. 427 - 430, 1997.

TEIXEIRA, A. A., BALABAN, M. O; GERMER, S. P. M., SADAHIRA, M. S., TEIXEIRA NETO, R. O. & VITALI, A. A. Heat transfer model performance in simulation of process deviations. Journal of Food Science, v. 64, n. 3, p. 488 - 493, 1999.

TEIXEIRA, A.A.; MANSON, J.E. Computer control of batch retort operations with on-line correction of process deviations. Food Technology, v. 36, n. 4, p. 85-90, 1982.

TOLEDO, R. T. Fundamentals of Food Process Engineering. 2nd ed. London, Chapman & Hall, 1994.

VARGA, S.; OLIVEIRA, J. C.; SMOUT, C.; HENDRICKX, M. E. Modelling temperature variability in batch retorts and its impact on lethality distribution. Journal of Food Engineering, v.44, p. 163- 174, 2000.

XIONG, R.; XIE, G.; EDMONDSON, A.E.; SHEARD, M.A. A mathematical model for bacterial inactivation. International. Journal of Food Microbiology, v. 46, p. 45 – 55, 1999.

ZHANG, Q.; LIPPMANN, S.; GRASEMANN, A.; ZHU, M.; RETTENMAYR, M. Determination of temperature dependent thermophysical properties using an inverse method and an infrared line camera. International Journal of Heat and Mass Transfer, v. 96, 2016.

ZHU, S. ; LI, B. ; CHEN, G. (2022). Improving prediction of temperature profiles of packaged food during retort processing. Journal of Food Engineering, 313, 110758.




How to Cite

Gontijo, D. L. M., Barbosa, R. Y. M., Sislian, R., & Gedraite, R. (2024). Parameters identification associated with artichoke pâté thermal diffusivity via finite volume element method. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(2), e3522.




Most read articles by the same author(s)