Variables related to the stability of soil macro and microaggregates of a toposequence in the Brazil south region

Authors

  • Daniel Hanke
  • Jeferson Dieckow
  • Vander de Freitas Melo
  • Maurício Fabiano Biesek

DOI:

https://doi.org/10.55905/oelv22n2-242

Keywords:

carbon, iron oxides, cavitation, kaolinite, organo-mineral complexes

Abstract

Soil aggregates are the basic components of soil structure, being important to its environmental properties and functions. The objective of this study was to investigate the variables related to the aggregates stability, measured by the method of dry and wet sieving and by applying ultrasound energy, in three different soils of a toposequence in southern Brazil. The study was performed in three soils sampled in the city of Pinhais / PR: i) Oxisol (top slope); Ii) Inceptisol (medium third) and; Iii) Gleisol (floodplain). The aggregates stability was determined measured by the method of dry and wet sieving (macroaggregates), as well as by applying ultrasound energy (microaggregate). The results were correlated with soil chemical, physical and mineralogical attributes. The organic matter, the low crystallinity Fe oxides and kaolinite were the most important variables for the profile structural stability. In turn, the soil texture did not show a direct relation with soil aggregation. The Gleisol show highest structural stability, followed by Oxisol and Inceptisol.

References

Braga, J.M. Avaliação de fertilidade do solo (análise química) - Parte I. Viçosa: Universidade Federal de Viçosa, 1980. 87p.

Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma, v.124, n.1/2. p.3-22, 2005. <http://dx.doi.org/10.1016/j.geoderma.2004.03.005>

Dick, D.P.; Schwertmann, U. Microagregates from Oxisols and Inceptisols: Dispersion through selective dissolution’s and physicochemical treatments. Geoderma, v.74, n.1/2, p.49-63, 1996. <http://dx.doi.org/10.1016/S0016-7061(96)00047-X>

Berhe, A.A.; Kleber, M. Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology. Earth Surface Processes and Landforms, v.38, n.8, p.908–912, 2013. <http://dx.doi.org/10.1002/esp.3408>

Chaplot, V.; Cooper, M. Soil aggregate stability to predict organic carbon outputs from soils. Geoderma, v.243, p.205-213, 2015. <http://dx.doi.org/10.1016/j.geoderma.2014.12.013>

Christensen, B.T. Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science, v.20, p.1-90, 1992.

Dick, D.P. & Schwertmann, U. Microaggregates from oxisols and inceptisols: dispersion through selective dissolutions and physicochemical treatments. Geoderma, 74:49-63, 1996.

Dick, D. P.; Hanke, D. A Matéria orgânica do solo: propriedades, reações e processos. In: Tiecher, T.; Martins, A. P.; Mallmann, F. J. K. (Eds.). Química do Solo. Santa Maria – RS: Sociedade Brasileira de Ciência do Solo – Núcleo Regional Sul, 2023, p.83-137.

Fristensky, A.J.; Grismer, M.E. Evaluation of ultrasonic aggregate stability and rainfall erosion resistance of disturbed and amended soils in the Lake Tahoe Basin, USA. Catena, v.79, n.1, p.93-102; 2009. <http://dx.doi.org /10.1016/j.catena.2009.06.003>

Gee, G.W.; Bauder, J.W. Particle-size analysis. In: Klute A. (Org.). Methods of soil analysis. Physical and mineralogical methods. 2nd ed. Madison: American Society of Agronomy, 1986. p.383-411.

Hanke, D.; Melo, V.F.; Dieckow, J.; Dick, D.P.; Bognola, I.A. Influência da matéria orgânica no diâmetro médio de minerais da fração argila de solos desenvolvidos de basalto no sul do Brasil. Revista Brasileira de Ciência do Solo, v.39, n.6, p.1611-1622, 2015. <http://doi.org/10.1590/01000683rbcs20140655>

Hanke, D.; Dick, D.P. Aggregate stability in soil with humic and histic horizons in a toposequence under Araucaria forest. Revista Brasileira de Ciência do Solo, v.41, n.3, p.1603-1615, 2017. <http://doi.org/10.1590/01000683rbcs20160369>

Hanke, D.; Dick, D.P. Organic matter stocks and the interactions of humic substances with araucaria moist forest soil metals with humic and hístic horizons. Revista Brasileira de Ciência do Solo. v.41, n.3, p.1616-1628, 2017. <http://doi.org/10.1590/01000683rbcs20160383>

Hanke, D.; Dick, D. P. Estoque de carbono e mecanismos de estabilização da Matéria Orgânica do Solo: uma revisão. Revista Científica AGROPAMPA. 2:171-190, 2019.

Horne, D.J.; Mcintosh, J.C. hydrophobic compound in sands from New Zealand. In: Ritsema, C.J.; Dekker, L.W. (Org.). Soil Water repellency: occurrence, consequences, and amelioration. Amsterdam: Elsevier Science, 2003. p.26-35.

Igwe, C.A.; Zarei, M.; Stahr, K. Colloidal stability in some tropical soils of southeastern Nigeria as affected by iron and aluminium oxides. Catena, v.77, n.3, p.232-237. <http://doi.org/10.1016/j.catena.2009.01.003>

Inda Junior, A.V.; Bayer, C.; Conceição, P.C.; Boeni, M.; Salton, J.C.; Tonin, A.T. Variáveis relacionadas à estabilidade de complexos organo-minerais em solos tropicais e subtropicais brasileiros. Ciência Rural, v.37, n.5, p.1301-1307. <http://doi.org/10.1590/S0103-84782007000500013>

Kämpf, N. & Dick, D. Óxidos de ferro em Cambissolos Brunos no Rio Grande do Sul e Sul de Minas Gerais. Revista Brasileira de Ciência do Solo, 8:183-188, 1984.

Kämpf, N.; Marques, J.J.; Curi, N. Mineralogia de solos brasileiros. In: Ker, J.C.; Curi, N.; Schaefer, E.G.R.; Vidal-Torrado, P. (Org.). Pedologia Fundamentos. Viçosa: Sociedade Brasileira de Ciência do Solo, 2012. p.81-145.

Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In: Klute, A. Methods of soil analysis. Madison: American Society of Agronomy, 1986. p.425-442.

Kleber, M.; Sollins, P.; Sutton, R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, v.85, n.1, p.9-24, 2007. <http://dx.doi.org/10.1007/s10533-007-9103-5>

Maack, R. Geografia física do Estado do Paraná. 4a ed. Rio de Janeiro: UEPG; 2012. 350p.

Mckeague, J.A. Manual on soil sampling and methods of analysis. Ottawa: Canadian Society of Soil Science; 1978. 437p.

Mikutta, R.; Zang, U.; Chorover, J.; Haumaier, L.; Kalbitz, K. Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms. Geochimica et Cosmochimica Acta, v.75, n.11, p.3135-3154, 2011. <http://doi.org/10.1016/j.gca.2011.03.006>

Novara, A.; La Mantia, T.; Barbera, V.; Gristina, L. Paired-site approach for studying soil organic carbon dynamics in a Mediterranean semiarid environment. Catena, v.89, n.1, p.1-7, 2012. <http://dx.doi.org/10.1016/j.catena.2011.09.008>

Oades, J.M. Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil. v.76, n.1, p.319-337. <http://dx.doi.org 10.1007/BF02205590>

Six, J.; Bossuyt, H.; Degryse, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 79:7-31, 2004.

Stumm, W. Chemistry of the solid-water interface. New York: John Wiley; 1992. 428p.

Wiseman, C.L.S.; Püttmann, W. Interactions between mineral phases in the preservation of soil organic matter. Geoderma, v.134, n.1/2, p.109-18, 2006. https://doi.org/10.1016/j.geoderma.2005.09/001

Witthig, L.D.; Allardice, W.R. X - Ray diffraction techniques. In: KLUTE, A., ed. Methods of soil analysis. Part 1: Physical and mineralogical methods. Madison: American Society of Agronomy, 1986. p.331-362.

Downloads

Published

2024-02-28

How to Cite

Hanke, D., Dieckow, J., Melo, V. de F., & Biesek, M. F. (2024). Variables related to the stability of soil macro and microaggregates of a toposequence in the Brazil south region. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(2), e3517. https://doi.org/10.55905/oelv22n2-242

Issue

Section

Articles