Preparação e caracterização de complexos polieletrolíticos a partir de polímeros de fontes renováveis

Authors

  • Marciele Gomes Rodrigues
  • Luís Carlos de Morais
  • Daniel Pasquini

DOI:

https://doi.org/10.55905/oelv22n2-169

Keywords:

quitosana, carboximetil lignina, lignosulfonato de sódio, complexos de polieletrólitos, esferas

Abstract

O interesse na utilização de polímeros renováveis é crescente por serem materiais biodegradáveis e recicláveis, tornando-os materiais ideais para aplicações em diversas áreas. Portanto, o objetivo desta pesquisa foi obter complexos de polieletrólitos e esferas através da associação de polímeros de cargas opostas, visando aplicações industriais, por meio de um método simples de mistura. O contato entre as soluções catiônicas e aniônicas, resultou em interações bem-sucedidas de quitosana com a carboximetil lignina e lignosulfonato de sódio. Já as esferas foram obtidas com sucesso por meio da interação entre os polímeros de quitosana e lignosulfonato de sódio, e apresentaram entre 3 e 5 mm. A microscopia eletrônica de varredura e a espectroscopia de raios-X por energia dispersiva, confirmaram propriedades como porosidade na superfície e parte interna das esferas e o teor em massa dos elementos, respectivamente. Em suma, a pesquisa demonstrou a viabilidade de obter complexos de polieletrólitos e esferas a partir de uma abordagem de baixo custo comercial.

References

ABE, M. M.; MARTINS, J. R.; SANVEZZO, P. B.; MACEDO, J. V.; BRANCIFORTI, M. C.; HALLEY, P.; BOTARO, V. R.; BRIENZO, M. Advantages and disadvantages of bioplastics production from starch and lignocellulosic componentes. Polymers, v. 13, n. 15, p. 2484-2508, 2021.

ANANDHARAMAKRISHNAN, C.; RIELLY, C. D.; STAPLEY, A. G. F. Spray-freeze-drying of whey proteins at subatmospheric pressures. Dairy Science and Technology, v. 90, n. 2, p. 321-334, 2010.

ARDEAN, C.; DAVIDESCU, C. M.; NEMES, N. S.; NEGREA, A.; CIOPEC, M.; DUTEANU, N.; NEGREA, P.; SEIMAN, D. D.; MUSTA, V. Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. International Journal of Molecular Sciences, v. 22, n. 14, p. 1-28, 2021.

ARO, T.; FATEHI, P. Production and application of lignosulfonates and sulfonated lignin. ChemSusChem, v. 10, n. 9, p. 1861-1877, 2017.

BASHIR, K.; AGGARWAL, M. Physicochemical, structural and functional properties of native and irradiated starch: a review. Association Food Scientists & Technologists, v. 56, n. 2, p. 513-523, 2019.

BOURGANIS, V.; KARAMANIDOU, T.; KAMMONA, O.; KIPARISSIDES, C. Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, v. 111, p. 44-60, 2017.

CAPACCHIONE, C.; PARTSCHEFELD, S.; OSBURG, A.; GLIUBIZZI, R.; GAETA, C. Modified carboxymethylcellulose-based scaffolds as new potential ecofriendly superplasticizers with a retardant effect for mortar: from the synthesis to the application. Materials, v. 14, n. 13, p. 3569-3585, 2021.

CERRUTTI, B. M.; SOUZA, C. S.; FROLLINI, I.; CASTELLAN, A.; RUGGIERO, R. Carboxymethyl lignin as stabilizer of aqueous alumina suspensions. Anais…, 2008.

CERRO, C. D.; ERICKSON, E.; DONG, T.; WONG, A. R.; EDER, E. K.; PURVINE, S. O.; MITCHELL, H. D.; WEITZ, K. K.; MARKILLIE, L . M.; BURNET, M. C.; HOYT, D. W.; CHU, R. K.; CHENG, J.; RAMIREZ, K. J.; KATAHIRA, R.; XIONG, W.; HIMMEL, M. E.; SUBRAMANIAN, V.; LINGER, J. G.; SALVACHÚA, D. Intracellular pathways for lignin catabolism in white-rot fungi. PNAS, v. 118, n. 9, p. 1-10, 2021.

CHAKRABORTY, G.; BHATTARAI, A.; DE, R. Polyelectrolyte–dye interactions: an overview. Polymers, v. 14, n. 3, p. 598-614, 2022.

CHOI, I.; CHANG, Y.; SHIN, S.H.; JOO, E.; SONG, H.J.; EOM, H.; HAN, J. Development of biopolymer composite films using a microfluidization technique for carboxymethylcellulose and apple skin particles. International Journal of Molecular Sciences, v. 18, n. 6, p. 1278-1291, 2017.

CONFEDERAT, L. G.; TUCHILUS, C. G.; DRAGAN, M.; SHA’AT, M.; DRAGOSTIN, O. M. Preparation and antimicrobial activity of chitosan and its derivatives: a concise review. Molecules, v. 26, n. 12, p. 1-17, 2021.

DIYANA, Z. N.; JUMAIDIN, R.; SELAMAT, M. Z.; GHAZALI, I.; JULMOHAMMAAD, N.; HUDA, N.; ILYAS, R. Physical properties of thermoplastic starch derived from natural resources and its blends: a review. Polymers, v. 13, n. 9, p. 1396-1415, 2021.

EKIELSKI, A.; MISHRA, P. W. Lignin for bioeconomy: the present and future role of technical lignin. International Journal of Molecular Sciences, v. 22, n. 1, p. 1-24, 2021.

FACCHI, D. P.; LIMA, A. C.; OLIVEIRA, L. H.; LAZARIN-BIDÓIA, D.; NAKAMURA, C. V.; CANESIN, E. A.; BONAFÉ, E. G.; MONTEIRO, J. P.; VISENTAINER, J. V.; MUNIZ, E. C.; MARTINS, A. F. Poluelectrolyte complexes based on alginate/tanfloc: optization, characterization and medical application. International Journal of Biological Macromolecules, v. 103, p. 129-138, 2017.

FERJAOUI, Z.; NAHLE, S.; CHANG, C. S.; GHANBAJA, J.; JOUBERT, O.; SCHNEIDER, R.; FERRARI, L.; GAFFET, E.; ALEM, H. Layer-by-layer self-assembly of polyelectrolytes on superparamagnetic nanoparticle surfaces. ACS Omega, v. 5, n. 10, p. 4770-4777, 2020.

FIGUEIREDO, P.; LAHTINEN, M. H.; AGUSTIN, M. B.; CARVALHO, D. M.; HIRVONEN, S.; PENTTILÄ, P. A.; MIKKONEN, K. S. Green fabrication approaches of lignin nanoparticles from different technical lignins: a comparison study. ChemSusChem, v. 14, n. 21, p. 4718-4730, 2021.

FISCHER, E. R.; HANSEN. B. T.; NAIR, V.; HOYT, F. H.; DORWARD, D. W. Scanning electron microscopy. Curr. Protoc. Microbiol, p. 1-76, 2012.

GENG, P.; ZHANG, S.; LIU, J.; ZHAO, C.; WU, J.; CAO, Y.; FU, C.; HAN, X.; HE, H.; ZHAO, Q. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation. Plant Physiology, v. 182, n. 3, p. 1272-1283, 2020.

GÓMEZ, C. P. J.; CECILIA, J. A. Chitosan: a natural biopolymer with and varied range of applications. Molecules, n. 25, v. 17, p. 1-43, 2020.

GRIMLING, B.; KAROLEWICZ, B.; NAWROT, U.; WŁODARCZYK, K.; GÓRNIAK, A. Physicochemical and antifungal properties of clotrimazole in combination with high-molecular weight chitosan as a multifunctional excipient. Marine Drugs, v. 18, n. 12, p. 1-18, 2020.

GU, F.; GENG, J.; LI, M.; CHANG, J.; CUI, Y. Synthesis of chitosan−lignosulfonate composite as an adsorbent for dyes and metal ions removal from wastewater. ACS Omega, v. 4, n. 25, p. 21421-21430, 2019.

GUIZANI, C.; LACHENAL, D. Controlling the molecular weight of lignosulfonates by an alkaline oxidative treatment at moderate temperatures and atmospheric pressure: a size-exclusion and reverse-phase chromatography study. International Journal of Molecular Sciences, v. 18, n. 12, p. 1-18, 2017.

GULARTE, M. S.; QUADRADO, R. F. N.; PEDRA, N. S.; SOARES, M. S. P.; BONA, N. T.; SPAVELLO, R. M.; FAJARDO, A. R. Preparation, characterization and antitumor activity of a cationic starch-derivative membrane embedded wiht a β-cyclodextrin/curcumin inclusion complex. International Journal of Biological Macromolecules, v. 148, p. 140-152, 2020.

HAMMAN, J. H. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Marine Drugs, v. 8, n. 4, p. 1305-1322, 2010.

HATTORI, H.; ISHIHARA, M. Development of mucoadhesive chitosan derivatives for use as submucosal injections. Polymers, v. 10, n. 4, p. 1-16, 2018.

ISHIHARA, M.; KISHIMOTO, S.; NAKAMURA, S.; SATO, Y.; HATTORI, H. Polyelectrolyte complexes of natural polymers and their biomedical applications. Polymers, v. 11, n. 4, p. 1-12, 2019.

JANSSON, M.; SKEPÖ, M. Polyelectrolyte-nanoplatelet complexation: is it possible to predict the state diagram? International Journal of Molecular Sciences, v. 20, n. 24, p. 6217-6232, 2019.

JAVANBAKHT, S.; SHAABANI, A. Carboxymethyl cellulse-based oral delivery systems. International Journal of Biological Macromolecules, v. 133, p. 21-29, 2019.

KOPEK, B. G.; SHTENGEL, G.; GRIMM, J.B.; CLAYTON, D. A.; HESS, H. F. Correlative photoactivated localization and scanning electron microscopy. Plos One, v. 8, n. 10. p. 1-11, 2013.

KUMAR, R.; BUTREDDY, A.; KOMMINENI, N.; REDDY, P. G.; BUNEKAR, N.; SARKAR, C.; DUTT, S.; MISHRA, V. K.; AADIL, K. R.; MISHA, Y. K.; OUPICKY, D.; KAUSHIK, A. Lignin: drug/gene delivery and tissue engineering applications. International Journal of Nanomedicine, v. 16, p. 2419-2441.

LAWS, R.; STEEL, D. H.; RAJAN, N. Research techniques made simple: volume scanning electron microscopy. Journal of Investigative Dermatology, v. 142, n. 2, p. 265-271, 2022.

LANKALAPALLI, S; KOLAPALLI, V. R. M. Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian Journal of Pharmaceutical Sciences, v. 71, n. 5, p. 481-487, 2009.

LIU, C.; LI, Y.; HOU, Y. Preparation of a novel lignin nanosphere adsorbent for enhancing adsorption of lead. Molecules, v. 24, n. 15, p. 2074-2086, 2019.

LU, Y.; JOOSTEN, L.; DONKERS, J.; ANDRIULO, F.; SLAGHEK, T. M.; PHILLIPS-JONES, M. K.; GOSSELINK, R. J. A.; HARDING, S. E. Characterisation of mass distributions of solvente-fractionated lignins using analytical ultracentrifugation and size exclusion chromatography methods. Scientific Reports, v. 11, n. 1, p. 1-12, 2021.

LUNA, R. C.; ILLANA, A. M.; PÉREZ, F. N.; CARO, R. R.; VEIGA, M. D. Naturally occurring polyelectrolytes and their use for the development of complex-based mucoadhesive drug delivery systems: an overview. Polymers, v. 13, n. 14, p. 1-27, 2021.

MACIEL, V. B. V. Complexos dos polieletrólitos quitosana e pectina para a obtenção de sistemas carreadores de compostos bioativos. Campinas, 2015, p. 175. Tese (Doutorado) – Universidade Estadual de Campinas.

MANASSOV, N.; SAMY, M. N.; DATKHAYEV, U.; AVULA, B.; ADAMS, S. J.; KATRAGUNTA, K.; RAMAN, V.; KHAN, I. A.; ROSS, S. A. Ultrastructural, energy-dispersive X-ray spectroscopy, chemical study and LC-DAD-QT of chemical characterization of cetraria islandica (L.) ach. Molecules, v. 28, n. 11, p. 1-19, 2023.

MANSUR, A. A. P.; AMARAL JÚNIOR, J. C.; CARVALHO, S. A.; CARVALHO, I. C.; MANSUR, H. S. Cu-In-S/Zn@carboxymethylcellulose supramolecular strutures: fluorescente nanorachitectures for targeted-theranoostics of câncer cells. Carbohydrate Polymers, v. 247, p. 1-14, 2020.

MASLAMANI, N.; BAKHSH, E.; KHAN, S. B.; DANISH, E. Y.; AKHTAR, K.; FAGIEH, T. M.; SU, X.; ASIRI, A. M. Chitosan@carboxymethylcellulose/CuO-Co2O3 nanoadsorbent as a super catalyst for the removal of water pollutants. Gels, v. 8, n. 2, p. 91-115, 2022.

MEKA, V. S.; SING, M. K.; PICHIKA, M. R.; NALI, S. R.; KOLAPALLI, V. R.; KESHARWANI, P. A comprehensive review on polyelectrolyte complexes. Drug Discovery Today, v. 22, n. 11, p. 1697-1706, 2017.

MONTEIRO, A. A. S.; RICHTER, A. R.; MACIEL, J. S.; FEITOSA, J. P. A.; PAULA, H. C. B.; PAULA, R. C. M. Efeito da modificação químia na solubilidade e intumescimento de microesferas à base de goma do cajueiro carboximetilada e quitosana. Polímeros, v. 25, n. especial, p. 31-39, 2015.

MUSL, O.; SULAEVA, I.; BACHER, M.; MAHLER, A. K.; ROSENAU, T.; POTTHAST, A. Hydrophobic interaction chromatography in 2D liquid chromatography characterization of lignosulfonates. ChemSusChem, v. 13, n. 17, p. 4595-4604, 2020.

MUTHUKRISHNAN, S.; MUN, S.; NOH, M. Y.; GEISBRECHT, E. R.; ARAKANE, Y. Insect cuticular chitin contributes to form and function. Curr Pharm Des., v. 26, n. 29, p. 3530-3545, 2020.

NAKAYAMA, R.; KATSUMATA, K.; NIWA, Y.; NAMIKI, N. Dependence of water-permeable chitosan membranes on chitosan molecular weight and alkali treatment. Membranes, v. 10, n. 11, p. 1-13, 2020.

NASIR, N. M.; ABDULMALEK, E.; ZAINNUDDIN, N. Preparation and optimization of water-soluble cationic sago starch with a high degree of substitution using response surface methodology. Polymers, v. 12, n. 11, p. 2614-2628, 2020.

NAZRIN, A.; SAPUAN, S. M.; ZUHRI, M. Y. M. Mechanical, physical and thermal properties of sugar palm panocellulose reinforced thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend bionanocomposites. Polymers, v. 12, n. 10, p. 2216-2233, 2020.

NEACSU, I. A.; LEAU, S. A.; MARIN, S.; HOLBAN, A. M.; VASILE, B. S.; NICOARA, A. I.; ENE, V. L.; BLEOTU, C.; KAYA, M. G. A.; FACAI, A. Collagen-carboxymethylcellulose biocomposite woun-dressings with antimicrobial activity. Materials, v. 14, n. 5, p. 1153-1171, 2021.

PAZOS, M. I.; GALET, L.; ROLLAND, C.; SCHER, J.; GAIANI, C. Interest of ener-gy dispersive X-ray microanalysis to characterize the surface composition of milk pow-der particles. Colloids and Surfaces B: Biointerfaces, v. 111, p. 242–251, 2013.

RASHEED, P. A.; PANDEY, R. P.; JABBAR, K. A.; SAMARA, A.; ABDULLAH, A. M.; MAHMOUD, K. A. Chitosan/lignosulfonate nanospheres as “green” biocide for controlling the microbiologically influenced corrosion of carbon steel. Materials, v. 13, n. 11, p. 1-17, 2020.

REGALADO, R. J. J.; CAICEDO, C.; GARCÍA, A. F.; VALLEJO, C. C. R.; LOREDO, R. Y. A. Preparation and physicochemical properties of modified corn starch-chitosan biodegradable films. Polymers, v. 13, n. 24, p. 4431-4444, 2021.

RIZEQ, B. R.; YOUNES, N. N.; RASOOL, K.; NASRALLAH. Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles. International Journal of Molecular Sciences, v. 20, n. 22, p. 1-24, 2019.

RONČEVIĆ, I. S.; KRIVIC, D.; BULJAC, M.; VLADISLAVIĆ, N.; BUZUK, M. Polyelectrolytes assembly: a powerful tool for electrochemical sensing application. Sensors, v. 20, n. 11, p. 3211-3272, 2020.

RUWOLDT, J.; ØYE, G. Effect of low-molecular-weight alcohols on emulsion stabilization with lignosulfonates. ACS Omega, v. 5, n. 46, p. 30168-30175, 2020.

RUWOLDT, J.; PLANQUE, J.; ØYE, G. Lignosulfonate salt tolerance and the effect on emulsion stability. ACS Omega, v. 5, n. 25, p. 15007-15015, 2020.

SALADINO, M. L.; MARKOWSKA, M.; CARMONE, C.; CANCEMI, P.; ALDUINA, R.; PRESENTATO, A.; SCAFFARO, R.; BIALY, D.; HASIAK, M.; HRENIAK, D.; WAWRZYŃSKA, M. Graphene oxide carboxymethylcellulose nanocomposite for dressing materials. Materials, v. 13, n. 8, p. 1980-1993, 2020.

SCHNEIDER, M.; FINIMUNDI, N.; PODZOROVA, M.; PANTYUKHOV, P.; POLETTO, M. Assessment of morphological, physical, thermal, and thermal conductivity properties of polypropylene/lignosulfonate blends. Materials, v. 14, n. 3, p. 1-10, 2021.

SILVA, K. M. M. N. Caracterização de hidrogéis semi-interpenetrantes de alginato e quitosana reticulados com cloreto de cálcio ou glutaraldeído: estudo do efeito das condições de preparo em suas propriedades mecânicas e físico-químicas. Belo Horizonte, 2015, p.136. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Minas Gerais.

SIMON, S.; SAADAT, M.; RUWOLDT, J.; DUDEK, M.; ELLIS, R.; ØYE, G. Lignosulfonates in crude oil processing: interactions with asphaltenes at the oil/water interface and screening of potential applications. ACS Omega, v. 5, n. 46, p. 30189-30200, 2020.

SINGH, R.; K. SHITIZ; A. SINGH. Chitin and chitosan: biopolymers for wound management. International Wound Journal, v. 14, n. 6, p. 1276-1289, 2017.

SLATER, T. J. A.; LEWIS, E. A.; HAIGH, S. J. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles. J. Vis. Exp., v. 113, 2016.

TANGTHUAM, P.; PIMOEI, J.; MOHAMAD, A. A.; MAHLENDORF, F.; SOMWANGTHANAROJ, A.; KHEAWHOM, S. Carboxymethyl cellulose-based polyelectrolyte as cationic exchange membrane for zinc-iodine batteries. Heliyon, v. 6, n. 10, p. 1-7, 2020.

TEMESGEN, S.; RENNERT, M.; TESFAYE, T.; NASE, M. Review on spinning of biopolymer fibers from starch. Polymers, v. 13, n. 7, p. 1121-1152, 2021.

TIRRELL, M. Polyelectrolyte complexes: fluid or solid? ACS Central Science, v. 4, n. 5, p. 532-533, 2018.

TOWSEND; K.; LAFFAN, J.; HAYMAN, G. Carboxymethylcellulose excipient allergy: a case report. Journal of Medical Case Reports, v. 15, p. 565-568, 2021.

VALE, R. S. Estudo da estrutura de complexos de polieletrólitos sobre as propriedades de transporte de água e sais. São Carlos, 2015, p. 111. Dissertação (Mestrado) – Universidade Federal de São Carlos.

WANG, W.; MENG, Q.; LI, Q.; LIU, J.; ZHOU, M.; JIN, Z.; ZHAO, K. Chitosan derivatives and their application in biomedicine. International Journal of Molecular Sciences, v. 21, n. 2, p. 1-26, 2020.

ZHAO, D.; YU, SHUANG.; SUN, B.; GAO, S.; GUO, S.; ZHAO, K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers, v. 10, n. 4, p. 1-17, 2018.

Published

2024-02-20

How to Cite

Rodrigues, M. G., de Morais, L. C., & Pasquini, D. (2024). Preparação e caracterização de complexos polieletrolíticos a partir de polímeros de fontes renováveis. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(2), e3349. https://doi.org/10.55905/oelv22n2-169

Issue

Section

Articles