Can Azospirillum brasilense compensate part of the phosphate fertilizer in soybean crop by promoting plant growth?

Authors

  • Itacir Eloi Sandini
  • Isabela Martins Bueno Gato
  • Anthony Hasegawa Sandini
  • André Shigueyoshi Nakatani

DOI:

https://doi.org/10.55905/oelv22n2-126

Keywords:

Glycine max, inoculation, plant growth promotion, phosphate fertilization

Abstract

Bioinoculants are widely used in Brazil, based on their efficiency and low cost, in addition to increase in grain yield and lower use of fertilizers in agriculture. In this context, we investigated the use of Azospirillum brasilense to compensate part of phosphate fertilization in soybean crop by promoting plant growth. The field trials were carried out in 2020/21 crop season in four locations in Brazil. The treatments consisted of control (no P application and no microbial inoculation); complete fertilization (100% of the recommended P for the crop and no microbial inoculation); standard commercial inoculant + 75% of the recommended P for the crop; Azosphera® (inoculant based on A. brasilense, strains Ab-V5 and Ab-V6) + 75% of the recommended P for the crop. The effects were assessed on grain yield, thousand grain weight, nodulation, root and shoot dry weight, N and P content in grains and leaves. The results obtained show that inoculation of soybean crop with Azosphera® inoculant, combined with 75% of the recommended phosphate fertilization, in general, provided higher nodulation and plant dry weight and increased grain yield compared to control, and these parameters also did not differ from treatment with complete phosphate fertilization. Thus, the results show that the use of Azosphera® inoculant promoted soybean plant growth and it was possible to compensate the 25% reduction in phosphate fertilization, without impairing the development and yield of soybean crop.

References

AHEMAD, M.; KHAN, M. S. Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Annals of microbiology, v. 62, n. 4, p. 1531–1540, 2012. https://annalsmicrobiology.biomedcentral.com/articles/10.1007/s13213-011-0407-2

AKBARI, A. et al. Isolation and selection of indigenous Azospirillum spp. and the IAA of superior strains effects on wheat roots. World J Agric Sci, v. 3, p. 523–529, 2007. https://www.researchgate.net/publication/237401347_Isolation_and_Selection_of_Indigenous_Azospirillum_spp_and_the_IAA_of_Superior_Strains_Effects_on_Wheat_Roots

ANZUAY, M. S. et al. Beneficial effects of native phosphate solubilizing bacteria on peanut (Arachis hypogaea L) growth and phosphorus acquisition. Symbiosis (Philadelphia, Pa.), v. 66, n. 2, p. 89–97, 2015. https://www.researchgate.net/publication/283668049_Beneficial_effects_of_native_phosphate_solubilizing_bacteria_on_peanut_Arachis_hypogaea_L_growth_and_phosphorus_acquisition

ARMENDARIZ, A. L. et al. Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant physiology and biochemistry, v. 138, p. 26–35, 2019. https://www.sciencedirect.com/science/article/abs/pii/S0981942819300671

BARASSI, C. A. et al. Potencialidad de Azospirillum en optimizer el crecimiento vegetal bajo condiciones adversas. In: CASSÁN, F. D.; GARCIA DE SALAMONE, I. (Eds.). Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Asociación Argentina de Microbiologia. v. 1, cap. 3, p. 49-59, 2008.

BARBOSA, J. Z. et al. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Appl Soil Ecol, v. 163, 2021. https://www.sciencedirect.com/science/article/abs/pii/S0929139321000342?via%3Dihub

BASHAN, Y.; HOLGUIN, G.; DE-BASHAN, L. E. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian journal of microbiology, v. 50, n. 8, p. 521–577, 2004. https://pubmed.ncbi.nlm.nih.gov/15467782/

BRACCINI, A. et al. Co-inoculation and modes of application of Bradyrhizobium japonicum and Azospirillum brasilense and nitrogen fertilization on plant nodulation and soybean crop yield. Sci Agrar Parana, v. 15, p. 27–35, 2016. https://www.researchgate.net/publication/299401335_Co-inoculacao_e_Modos_de_Aplicacao_de_Bradyrhizobium_japonicum_e_Azospirillum_brasilense_e_Adubacao_Nitrogenada_na_Nodulacao_das_Plantas_e_Rendimento_da_Cultura_da_Soja

BRACCINI, L. A. et al. Influence of seed co-inoculation with Bradyrhizobium species and Azospirillum brasilense on soybean development in Southern and Southeastern Brazil. African Journal of Agricultural Research, p. 81–90, 2023. https://academicjournals.org/journal/AJAR/article-full-text-pdf/42888D870239

BRANDELERO, E. M., et al. Nodulação de cultivares de soja e seus efeitos no rendimento de grãos. Semina: Ciências Agrárias, 30(3), 581, 2009. https://www.academia.edu/54609359/Nodula%C3%A7%C3%A3o_de_cultivares_de_soja_e_seus_efeitos_no_rendimento_de_gr%C3%A3os

CABANOS, C.; MATSUOKA, Y.; MARUYAMA, N. Soybean proteins/peptides: A review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds. Peptides, v. 143, n. 170598, p. 170598, 2021. https://pubmed.ncbi.nlm.nih.gov/34153351/

CALZAVARA, A. K. et al. Associative bacteria influence maize (Zea mays L.) growth, physiology and root anatomy under different nitrogen levels. Plant biology (Stuttgart, Germany), v. 20, n. 5, p. 870–878, 2018. https://pubmed.ncbi.nlm.nih.gov/29762883/

CASSÁN, F. et al. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and fertility of soils, v. 56, n. 4, p. 461–479, 2020. https://link.springer.com/article/10.1007/s00374-020-01463-y

CEREZINI, P. et al. Strategies to promote early nodulation in soybean under drought. Field crops research, v. 196, p. 160–167, 2016. https://www.sciencedirect.com/science/article/abs/pii/S0378429016302039

CHIBEBA, A. M. et al. Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. American Journal of Plant Sciences, n. 6, p. 1641–1649, 2015. https://www.alice.cnptia.embrapa.br/handle/doc/1019251

CONAB - COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da Safra Brasileira de Grãos, Brasília, DF, v. 11, safra 2023/24, n. 3

terceiro levantamento, dezembro 2023. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos

CONG, P. T. et al. Inoculant plant growth-promoting microorganisms enhance utilisation of urea-N and grain yield of paddy rice in southern Vietnam. European journal of soil biology, v. 45, n. 1, p. 52–61, 2009. https://www.sciencedirect.com/science/article/abs/pii/S116455630800071X?via%3Dihub

DALOLIO, R. S. et al. Coinoculação de soja com Bradyrhizobium e Azospirillum. Journal of Agronomic Sciences, v. 7, n. 2, p. 1–7, 2018. https://www.researchgate.net/publication/327097118_CO-INOCULACAO_DE_SOJA_COM_Bradyrhizobium_e_Azospirillum

DUCA, D. D. et al. Indole-3-acetic acid in plant–microbe interactions. Anton Leeuw,106:85-125, 2014. https://link.springer.com/article/10.1007/s10482-013-0095-y

EL-TARABILY, K. A.; NASSAR, A. H.; SIVASITHAMPARAM, K. Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere competent isolate of Micromonospora endolithica. Applied Soil Ecology, v. 39, p. 161–171, 2008. https://www.researchgate.net/publication/223536853_Promotion_of_growth_of_bean_Phaseolus_vulgaris_L_in_a_calcareous_soil_by_a_phosphate-solubilizing_rhizosphere-competent_isolate_of_Micromonospora_endolithica

FARIA, T. C. et al. Agronomic Efficiency and Phosphate Solubilization of Pseudomonas fluorescens and Bradyrhizobium japonicum in Leaf-Spray Inoculation and Seed Treatment in Soybean. Journal of agricultural science, v. 14, n. 8, p. 117, 2022. https://ccsenet.org/journal/index.php/jas/article/view/0/47465

FERREIRA, C. M. H.; SOARES, H. M. V. M.; SOARES, E. V. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. The Science of the total environment, v. 682, p. 779–799, 2019. https://pubmed.ncbi.nlm.nih.gov/31146074/

GALINDO, F. S. et al. Technical and economic viability of co-inoculation with Azospirillum brasilense in soybean cultivars in the Cerrado. Revista Brasileira de Engenharia Agricola e Ambiental/Brazilian Journal of Agricultural and Environmental Engineering, v. 22, n. 1, p. 51–56, 2018. https://www.scielo.br/j/rbeaa/a/w9yDcYLGpHNQGWgkQhSg38x/?lang=en

GLICK, B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica, v. 2012, p. 963401, 2012. https://www.hindawi.com/journals/scientifica/2012/963401/

GITTI, D. et al. Inoculation of Azospirillum brasilense cultivars of beans types in winter crop. Rev. Agrar, v. 5, n. 15, p. 36–46, 2012. https://www.researchgate.net/publication/279662481_Inoculacao_de_Azospirillum_brasilense_em_cultivares_de_feijoes_cultivados_no_inverno

GRANADA, C. E. et al. Is phosphate solubilization the forgotten child of plant growth-promoting rhizobacteria? Frontiers in microbiology, v. 9, p. 2054, 2018. https://www.frontiersin.org/articles/10.3389/fmicb.2018.02054/full

GROPPA, M. D.; ZAWOZNIK, M. S.; TOMARO, M. L. Effect of co-inoculation with Bradyrhizobium japonicum and Azospirillum brasilense on soybean plants. European journal of soil biology, v. 34, n. 2, p. 75–80, 1998. https://www.sciencedirect.com/science/article/abs/pii/S1164556399900043

GUIMARÃES, V. F.; KLEIN, J. Inoculante líquido contendo Bacillus megaterium e B. subtilis é eficiente em promover crescimento e disponibilizar fósforo para a soja. Delos: desarrollo local sostenible, v. 16, p. 2029–2060, 2023. https://ojs.revistadelos.com/ojs/index.php/delos/article/view/1012/867

HAMEEDA, B. et al. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiological research, v. 163, n. 2, p. 234–242, 2008. https://www.sciencedirect.com/science/article/pii/S0944501306000589

HUNGRIA, M. Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Circular Técnica 325. Circular Técnica, v. 325, 2011. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/29676/1/Inoculacao-com-azospirillum.pdf

HUNGRIA, M. et al. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and soil, v. 331, n. 1–2, p. 413–425, 2010. https://link.springer.com/article/10.1007/s11104-009-0262-0

HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and fertility of soils, v. 49, n. 7, p. 791–801, 2013. https://www.bashanfoundation.org/contributions/Hungria-M/2013.-Hungria-BFS.pdf

HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, ecosystems & environment, v. 221, p. 125–131, 2016. https://www.sciencedirect.com/science/article/abs/pii/S0167880916300366?via%3Dihub

HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A new biotechnological tool to improve yield and sustainability. American Journal of Plant Sciences, p. 811–817, 2015. https://www.scirp.org/journal/paperinformation?paperid=55340

HUNGRIA, M. et al. Seed and leaf-spray inoculation of PGPR in brachiarias (Urochloa spp.) as an economic and environmental opportunity to improve plant growth, forage yield, and nutrient status. Plant and Soil, v. 463, p. 171–186, 2021. https://link.springer.com/article/10.1007/s11104-021-04908-x

INAGAKI, A. M. et al. Phosphorus fertilization associated to inoculation of maize with diazotrophic bacteria. African journal of agricultural research, v. 9, n. 48, p. 3480–3487, 2014. https://academicjournals.org/journal/AJAR/article-full-text/B42E4E348752

LAVAKUSH et al. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological engineering, v. 62, p. 123–128, 2014.

LIBÓRIO, P. H. DA S. et al. Co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense on the physiological quality of soybean seeds. Semina. Ciencias agrarias, v. 41, n. 6supl2, p. 2937–2950, 2020. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1129758/1/2020-Semina-v42-n6-Brady-Azo-physiol-quality-soy-seeds-Liborio-etal.pdf

LING, N. et al. Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f. sp. niveum. Plant Soil, v. 341, p. 485–493, 2011. https://link.springer.com/article/10.1007/s11104-010-0660-3

MAPA (Ministério da Agricultura, Pecuária e Abastecimento). Instrução Normativa nº 13, de 25 de março de 2011. MAPA, Brazil, 2011. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-13-de-24-03-2011-inoculantes.pdf/view

MARRA, L. M. Solubilização de fosfatos por bactérias e sua contribuição no crescimento de leguminosas e gramíneas / Leandro Marciano Marra. - Lavras: UFLA. [s.l: s.n.]., 2012. http://repositorio.ufla.br/jspui/bitstream/1/1103/1/TESE_Solubiliza%C3%A7%C3%A3o%20de%20fosfatos%20por%20bact%C3%A9rias%20e%20sua%20contribui%C3%A7%C3%A3o%20no%20crescimento%20de%20leguminosas%20e%20gram%C3%ADneas.pdf

MEHNAZ, S. Azospirillum: A Biofertilizer for Every Crop. Em: Plant Microbes Symbiosis: Applied Facets. New Delhi: Springer India, 2015. p. 297–314.

MCADAM, S. A. M. et al. Linking auxin with photosynthetic rate via leaf venation. Plant physiology, v. 175, n. 1, p. 351–360, 2017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5580753/

MEERT, L. et al. Different inoculating, forms of inoculation and their effects on the agronomic characteristics of soy culture. Research, Society and Development, 2020. https://rsdjournal.org/index.php/rsd/article/view/8499/7622

MORETTI, L. G. et al. Bacterial consortium and microbial metabolites increase grain quality and soybean yield. Journal of soil science and plant nutrition, v. 20, n. 4, p. 1923–1934, 2020. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/219471/1/ID-40046.pdf

OLIVEIRA-PAIVA, C. A. et al. Microrganismos solubilizadores de fósforo e potássio na cultura da soja. Brasília, DF: Embrapa, 2022. https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1143389/microrganismos-solubilizadores-de-fosforo-e-potassio-na-cultura-da-soja

PAGANO, M. C.; MIRANSARI, M. The importance of soybean production worldwide. Em: Abiotic and Biotic Stresses in Soybean Production. [s.l.] Elsevier, 2016. p. 1–26. https://www.researchgate.net/publication/313427911_The_importance_of_soybean_production_worldwide

PAVINATO, P. S. et al. Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil. Scientific reports, v. 10, n. 1, p. 15615, 2020. https://www.nature.com/articles/s41598-020-72302-1

PEDRAZZI, A. D. Q. et al. Crescimento e acúmulo de fitomassa em função do manejo de nitrogênio na cultura do milho. Revista Brasileira de Milho e Sorgo, v. 15, n. 3, 2016. https://rbms.abms.org.br/index.php/ojs/article/view/589/pdf

POMPEU, D. C.; POZZEBON, B. C.; FIGUEIRA, A. Interações endofíticas com plantas hospedeiras. Revisão Anual de Patologia de Plantas, v. 26, p. 96–112, 2018. http://irgu.unigoa.ac.in/drs/handle/unigoa/5757

PRABHU, N.; BORKAR, S.; GARG, S. Phosphate solubilization by microorganisms: Overview, mechanisms, applications and advances. Em: MEENA M, S. N. M. (Ed.). Advances in Biological Science Research: A Practical Approach. [s.l: s.n.]. p. 161–176, 2019.

PUENTE, M. L. et al. The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis (Philadelphia, Pa.), v. 76, n. 1, p. 41–49, 2018. https://ri.conicet.gov.ar/handle/11336/66184

REGO, C. H. Q. et al. Co-inoculation with Bradyrhizobium and Azospirillum increases yield and quality of soybean seeds. Agronomy Journal, v, v. 110, n. 6, 2018. https://acsess.onlinelibrary.wiley.com/doi/10.2134/agronj2018.04.0278

RICHARDSON, A. E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional plant biology: FPB, v. 28, n. 9, p. 897, 2001.

RODRÍGUEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, v. 17, n. 4–5, p. 319–339, 1999. https://www.sciencedirect.com/science/article/abs/pii/S0734975099000142?via%3Dihub

RODRIGUEZ, H. et al. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. The Science of Nature, v. 91, n. 11, p. 552–555, 2004. https://link.springer.com/article/10.1007/s00114-004-0566-0

RONDINA, A. B. L. et al. Changes in root morphological traits in soybean co-inoculated with Bradyrhizobium spp. and Azospirillum brasilense or treated with A. brasilense exudates. Biology and fertility of soils, v. 56, n. 4, p. 537–549, 2020. https://www.researchgate.net/publication/340215142_Changes_in_root_morphological_traits_in_soybean_co-inoculated_with_Bradyrhizobium_spp_and_Azospirillum_brasilense_or_treated_with_A_brasilense_exudates

SAIKIA, S. P. et al. Role of Azospirillum in the improvement of legumes In: Microbes for legume improvement. p. 389–408, 2010.

SILVA, F.C. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF:EMBRAPA, 2009. https://www.infoteca.cnptia.embrapa.br/handle/doc/330496

STATSOFT, 2004. Inc. STATISTICA (data analysis software system), version 7.

TABASSUM, B. et al. Bottlenecks in commercialization and future prospects of PGPR. Applied Soil Ecology, p. 102–117, 2017. https://www.sciencedirect.com/science/article/abs/pii/S0929139316305479

TIEN, T. M.; GASKINS, M. H.; HUBBELL, D. H. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Applied and environmental microbiology, v. 37, n. 5, p. 1016–1024, 1979. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC243341/pdf/aem00209-0238.pdf

TURAN, M. et al. Yield promotion and phosphorus solubilization by plant growth–promoting rhizobacteria in extensive wheat production in Turkey. Journal of plant nutrition and soil science, v. 175, n. 6, p. 818–826, 2012. https://onlinelibrary.wiley.com/doi/abs/10.1002/jpln.201200054

VAN DE WIEL, C. C. M.; VAN DER LINDEN, C. G.; SCHOLTEN, O. E. Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica; Netherlands journal of plant breeding, v. 207, n. 1, p. 1–22, 2016. https://link.springer.com/article/10.1007/s10681-015-1572-3

VIRUEL, E. et al. Inoculation of maize with phosphate solubilizing bacteria: effect on plant growth and yield. Journal of soil science and plant nutrition, n. ahead, p. 0–0, 2014. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162014000400005

VISHWAKARMA, K. et al. Revisiting Plant- Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A. Review. Front. Microbiol, v. 11, p. 1–21, 2020. https://www.frontiersin.org/articles/10.3389/fmicb.2020.560406/full

XUAN, Y. et al. Co-inoculation with phosphate-solubilizing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. European Journal of Soil Biology, n. 1, p. 112–117, 2012. https://www.infona.pl/resource/bwmeta1.element.elsevier-58698918-e08e-3af6-9d35-0a8c86505b45/tab/summary

WALPOLA, B. C.; YOON, M.-H. R. Phosphate solubilizing bactéria: Assesment of ther effect on growth promotion and phosphorus uptake of mung bean (Vigna radiata). Chilean Journal of Agricultural Research, p. 275–281, 2013. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392013000300010

WANG, H.-Y. et al. Preparation and utilization of phosphate biofertilizers using agricultural waste. Journal of integrative agriculture, v. 14, n. 1, p. 158–167, 2015. https://www.sciencedirect.com/science/article/pii/S2095311914607607

ZAHEDI, H.; ABBASI, S. Effect of plant growth promoting rhizobacteria (PGPR) and water stress on phytohormones and polyamines of soybean. Indian journal of agricultural research, v. 49, n. 5, 2015. https://arccjournals.com/journal/indian-journal-of-agricultural-research/A-190

ZHANG, N. et al. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant and soil, v. 344, n. 1–2, p. 87–97, 2011. https://www.academia.edu/92069651/A_new_bioorganic_fertilizer_can_effectively_control_banana_wilt_by_strong_colonization_with_Bacillus_subtilis_N11

ZUFFO, A. M. et al. Co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense in the soybean crop. Rev. Ciênc. Agrar, v. 38, n. 1, p. 87–93, 2015. https://revistas.rcaap.pt/rca/article/view/16873/13755

Published

2024-02-16

How to Cite

Sandini, I. E., Gato, I. M. B., Sandini, A. H., & Nakatani, A. S. (2024). Can Azospirillum brasilense compensate part of the phosphate fertilizer in soybean crop by promoting plant growth?. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(2), e3276. https://doi.org/10.55905/oelv22n2-126

Issue

Section

Articles