Evaluation of susceptibility of Amaranthus species to the herbicide trifloxysulfuron-sodium using nonlinear models

Authors

  • Edilene Cristina Pedroso Azarias
  • Natiele de Almeida Gonzaga
  • Rafaela de Carvalho Salvador
  • Joel Augusto Muniz
  • Edilson Marcelino Silva
  • Tales Jesus Fernandes

DOI:

https://doi.org/10.55905/oelv22n2-125

Keywords:

Amaranthus, non-linear regression, control, model Michaelis Menten

Abstract

Various elements have the potential to negatively impact crops in the agricultural sector, such as the presence of weeds that compete for essential resources, hindering growth and production and resulting in financial losses. There are several methods employed for weed control, among which herbicides stand out for requiring less labor and lower costs compared to others, especially in large-scale cultivation. The objective of this study was to use nonlinear models to assess the dose-response curve of the herbicide trifloxysulfuron-sodium applied to weeds of the genus Amaranthus. Data were collected at doses of 16D, 4D, D, 1/4D, 1/16D, 1/64D, and absence of products, where (D) represents doses of 7.5 and 17.5   The models were adjusted using the least squares method, employing the Gauss-Newton algorithm in the R software. Quality evaluation criteria included the coefficient of determination, residual standard deviation, Akaike information criterion, and the Bates and Watts curvatures. The fitted models met the assumptions of normality, independence of residuals, and homogeneous variance. Based on the results, the Michaelis Menten model was considered the most suitable for describing the data. It was observed that Amaranthus species exhibit variations in susceptibility to the herbicide, with A. hybridus and A. deflexus being the least and most susceptible, respectively, requiring doses of 6.02  and 306.90 to achieve 95% control.

References

Achim, Z.; Torsten, H. Diagnostic checking in regression relationships. R News, v.2, n.3, p.7-10, 2022. Disponível em:< https://cran.r-project.org/web/packages/lmtest/index.html>. Acesso em: 02 jan. 2024.

Azarias, E. C. P. et al. Study of the growth of Amaranthus weeds using non-linear mo-dels. Brazilian Journal of Biometrics. v. 42, n.1, 2024. No prelo.

Azarias, E. C. P. et al. Uso dos modelos von Bertalanffy e Logístico na descrição do acúmulo de massa seca das plantas daninhas Amaranthus retroflexus e Amaranthus hybridus. Revista Foco, v. 16, n.7, p. e2342-e2342, 2023a.

AZARIAS, E. C. P. et al. Descrição das curvas de germinaçao de plantas daninhas em diferentes temperaturas por modelos nao lineares. Sigmae, v. 12, n. 3, p. 1-9, 2023b.

Bates, D. M.; Watts, D. G. Relative curvature measures of nonlinearity: with discussion. Journal of the Royal Statistical Society, v. 42, n. 1, p. 1-25, 1980.

Carvalho, S. J. P. et al. Suscetibilidade diferencial de plantas daninhas do gênero Amaranthus aos herbicidas trifloxysulfuron-sodium e chlorimuron-ethyl. Planta Daninha, v. 24, p. 541–548, 2006.

Concenço, G. et al. Characterization of the weed flora in rice areas under distinct cropping systems and herbicide managements. Planta Daninha, v. 37, 2019.

Costa, L. O. et al. Target-site resistance and cross-resistance to als-inhibiting herbicides in radish and wild radish biotypes from brazil. Agronomy Journal, Wiley Online Library, v. 113, n. 1, p. 236–249, 2021.

De Carvalho Salvador, R. et al. Comparação da perda de nitrogênio em fertilizantes aplicados ao cafeeiro por meio das estimativas do modelo Gompertz. Sigmae, v. 12, n. 1, p. 90-95, 2023.

Embrapa. Ciência e tecnologia tornaram o Brasil um dos maiores produtores mundiais de alimentos. São Paulo, SP: EMBRAPA, 2021. Disponível em: https://www.embrapa.br/documents/10180/62618376/O+AGRO+NO+BRASIL+E+NO+MUNDO.pdf. Acesso em: 20 de dez. 2023.

Fernandes, J. G. et al. Description of the peach fruit growth curve by diphasic sigmoidal nonlinear models. Revista Brasileira de Fruticultura, v. 44, p. e-875, 2022.

Fernandes, J. G. et al. Avaliação de modelos não lineares na descrição da curva de crescimento do fruto de pessegueiro “aurora 1”. Revista Foco, v. 16, n. 9, p. e2993-e2993, 2023.

Fernandes, T. J. et al. Parameterization effects in nonlinear models to describe growth curves. Acta Scientiarum. Technology, v. 37, n. 4, p. 397–402, 2015.

Frühauf, A. C. et al. Predicting height growth in bean plants using non-linear and polynomial models. Revista Agrogeoambiental, v. 13, n. 3, p. 488-497, 2021.

Frühauf, A. C. et al. Description of height growth of hybrid eucalyptus clones in semi-arid region using non-linear models. Brazilian Journal of Biometrics. v. 40, n. 2, p. 138-151, 2022.

Groot, J.C.J. et al. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim Feed Sci Technol. v. 64, p. 77–89.

John, F.; Sandfor W. An {R} companion to applied regression. 3rd ed. Thousand Oaks: Sage, 2023 Disponível em: <https://cran.r-project.org/web/packages/car/index.html>. Acesso em: 02 jan. 2024.

Keshtkar, E. et al. Perspective: common errors in dose–response analysis and how to avoid them. Pest Management Science, v. 77, n. 6, p. 2599-2608, 2021.

Kleinpaul, J.A. et al. Productive traits of rye cultivars grown under different sowing seasons. Revista Brasileira de Engenharia Agrícola e Ambiental. v. 23, n.12, p. 937-944, 2019.

Maisincho A. et al. Modelos Matemáticos en la cinética enzimática. Una revisión. Centro Azúcar, v. 49, n. 1, p. 115-131, 2022.

Mello, A. C. et al. Modelos não lineares na descrição de altura da cultivar de girassol Rhino. Ciência Rural, v. 52, n. 3, p. e20210213, 2022.

Melo Machado, L. E. et al. Ajuste de modelos não lineares para descrever a germinação de sementes de brachiaria Brizantha cv. Marandu. Revista Foco, v.16, n. 6, p. e2221-e2221, 2023.

Miranda, L. F. et al. Nonlinear models to describe the growth of Jatropha plant (Jatropha curcas L.). Revista Ciência Agronômica, v. 52, n. 4, p. e20207602, 2021.

Moreira, H. J. C.; Bragança, H. B. N. Manual de identificação de plantas infestantes. Campinas, SP: FMC Agricultural Products, 2011. 1017 p.

Morota, F. K. et al. Manejo de plantas daninhas em frutíferas tropicais: abacaxizeiro, bananeira, coqueiro, mamoeiro e maracujazeiro. Revista Brasileira de Herbicidas, v. 19, n. 1, 2020.

Oliveira, M. D. et al. Controle de plantas daninhas: métodos físico, mecânico, cultural, biológico e alelopatia. Brasília, DF: Embrapa, 2018.

Pereira, S.; Silva, A. Toxicidade da fração polar obtida de amaranthus hybridus sobre a germinação e plântulas de feijão-caupi. Conexão Ciência (Online), v. 15, p. 56–70, 11 2020.

Penckowski, L. H. et al. Alerta! cresce o número de lavouras com Amaranthus hybridus resistente ao herbicida glifosato no sul do Brasil. Revista FABC, 2020. Abril/maio. Dis-ponível em: . Acesso em: 02 jan. 2024.

Pinheiro, J. C. et al. Linear and nonlinear mixed effects models. 2023. Disponível em: <https://cran.r-project.org/web/packages/nlme/index.html>. Acesso em: 02 jan. 2024.

Raimondi, M. A. et al. Atividade residual de herbicidas aplicados ao solo em relação ao controle de quatro espécies de Amaranthus. Planta Daninha, v. 28, p. 1073-1085, 2010. (Número Especial)

Raimondi, M. A. et al. Dose-response curve to soil applied herbicides and susceptibility evaluation of different amaranthus species using model identity. Planta daninha, v. 33, p. 137-146, 2015.

Ribeiro, T.D. et al. Description of the growth of pequi fruits by nonlinear models. Revis-ta Brasileira de Fruticultura,v. 40, p. e-949, 2018.

Ritz, C. Toward a unified approach to dose–response modeling in ecotoxico-logy. Environmental Toxicology and Chemistry, v. 29, n. 1, p. 220-229, 2010.

Roman, E. S. et al. Como funcionam os herbicidas: da biologia à aplicação. [S.l.]: Berthier Passo Fundo, 2007.

Seefeldt, S. S.; Jnsen, J. E.; Fuerst, E. P. Log-logistic analysis of herbicide dose-response relationships. Weed technology, v. 9, n. 2, p. 218-227, 1995.

Silva, É. M. d. et al. Description of blackberry fruit growth by nonlinear regression models. Revista Brasileira de Fruticultura, v. 42, n. 2, p.e-177, 2020.

Silva, É. M. d. et al. Evaluation of the critical points of the most adequate nonlinear model in adjusting growth data of ‘green dwarf’ coconut fruits. Revista Brasileira de Fruticultura, v. 43, n. 1, p. e-726, 2021.

SILVA FILHO, J. L. e al. Dry matter decomposition of cover crops in a no-tillage cotton system. Revista Caatinga, v. 31, p. 264-270, 2018.

Silva, W. S et al. Eucalyptus grandis x eucalyptus urophylla growth curve in different site classifications, considering residual autocorrelation. Brazilian Journal of Biome-trics, v. 39, n. 1, p. 122–138, 2021.

STREIBIG, J. C. Herbicide bioassay. Weed Res., v. 28, n. 6, p. 479-484, 1988

Syngenta. Caruru-de-mancha, Portal Syngenta, 2021. Disponível em: https://www.portalsyngenta.com.br/noticias/glossario-de-alvos/caruru-de-mancha, Acesso em: 21 de dez. 2023.

Vilela, M.S. L. et al. Comparison of nonlinear models for the description of carbon mineralization in degraded pasture soil and in soils with plant cover. Revista Agrogeoambiental, p. 20221680-20221680, 2022.

ZEVIANI, W. M. et al. Modelos não lineares para a liberação de potássio de estercos animais em latossolos. Ciência Rural, v. 42, n. 10, p. 1789-1796, 2012.

Published

2024-02-16

How to Cite

Azarias, E. C. P., Gonzaga, N. de A., Salvador, R. de C., Muniz, J. A., Silva, E. M., & Fernandes, T. J. (2024). Evaluation of susceptibility of Amaranthus species to the herbicide trifloxysulfuron-sodium using nonlinear models. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(2), e3275. https://doi.org/10.55905/oelv22n2-125

Issue

Section

Articles