Electroconductometer via Arduino for measurement in aqueous suspensions


  • Jorge Carlos Guerrero Vargas
  • José Aurélio Medeiros da Luz
  • Alan Kardek Rêgo Segundo
  • Felipe de Orquiza Milhomem




electroconductivity, flotation, arduino, porosity


Real-time electroconductivity monitoring is important in several industry instances. However, this monitoring in aqueous solutions or suspensions (e.g. mineral slurries), applying direct current, is problematic due to electrode polarization, which is the accumulation of ions at the electrode-solution interface. In this study, a low-cost circuit developed is based on Arduino, allowing real-time measurement. It has annular electrodes and operates at a frequency of 1.0 kHz, simulating an alternating current signal, in order to diminish the deleterious effect of interfacial polarization and electrolysis on the electrodes. Through calibration using standard KCl solutions, a measurement range of 0.002 S/m to 1,000 S/m was obtained with good accuracy and precision. Its use is exemplified here by predicting the porosity of suspended binary granular systems.


ANALYTICAL, R. Conductivity Theory and Calibration,2004. Disponible en: https://www.tau.ac.il/~chemlaba/Files/Theoryconductivity.pdf

BATALLER, R. et al. A study of the importance of the cell geometry in non - Faradaic systems. A new definition of the cell constant for conductivity measurement. Electrochemical Acta, v. 153, p. 263-272, 2015.

CHO, Y. S.; LASKOWSKI, J. S. Effect of flotation frothers on bubble size and foam stability. Int. Journal of mineral Processing, v. 64, 2-3, p. 69-80, 2002.

CORTÉS, F. R.; MONJARAZ, J. C. Arduino aplicaciones en robótica e ingenierías. México: Alfaomega, 2015. 468 p. ISBN: 978-607-622-193-8.

DIAS, R. P.; TEIXEIRA, J. A.; MOTA, M. G.; YELSHIN, A. I. Particulate binary mixtures: dependence of packing porosity on particle size ratio. Ind. Eng. Chem. Res. V. 43, p. 7912–7919. 2004.

DZINGAI, M.; MANONO, M.; CORIN, K. Simulating the Effect of Water Recirculation on Flotation through Ion-Spiking: Effect of Ca2+ and Mg2+. Minerals, v. 10, 11, p. 1-13, 2020.

EL-HUSSEINY, A; VANORIO, T.; MAVKO, G. Predicting porosity of binary mixtures made out of irregular nonspherical particles: Application to natural sediments. Advanced power technology, v. 30, 8, p. 1558-1566, 2019.

FERRARA, E.; CALLEGARO, L. & DURBIANO, F. Optimal frequency range for the measurement of A.C. conductivity in aqueous solutions. In: 17th IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE. Proceedings […]. Baltimore, MD, USA: 2000, vol. 2. p. 775-779.

FISCHER, M.; RENZLER, M.; USSMUELLER, T. Development of a Smart Bed Insert for Detection of Incontinence and Occupation in Elder Care, in: IEEE Access, v. 7, p. 118498-118508, 2019.

FURNAS, C. C. The relations between specific volume, voids, and size composition in systems of broken solids of mixed sizes. Washington: Department of Commerce — Bureau of Mines, 1928.

GENERATOR. FXR-2206,2008. Disponible en: .

GONÇALVES JR., A. A., Metrologia. Notas de aula. Florianópolis: DEMEC, Universidade Federal de Santa Catarina, 2002.

KATZ, E. Electrochemical contributions: Friedrich Wilhelm Georg Kohlrausch (1840–1910). Electrochemical Science Advances, v. 2, 2, 2021.

KUPHALDT, T. R. Lessons in industrial instrumentation 1/3. Hong Kong: Samurai Media Limited. 2017. 1186 p. ISBN: 978-988-8407-08-8.

LIU, SH. & MASLIYAH, J. M. Dispersion in porous media (Chapter 3). In: VAFAI, K. (Ed). Handbook of Porous Media. 2. ed. Taylor. & Francis, 2005. p. 81-140.

LIU, SH. & MASLIYAH, J. H. Single fluid flow in porous media. Chemical Engineering Communications, Vols. 148-150, 653-732. 1996.

MALDONADO, M. et al. Gas holdup estimation using Maxwell equation in flotation systems: Revisited. Minerals Engineering, v. 98, p. 9-13, 2016.

MALVINO, A.; BATES, D.J. Principios de electrónica. Madrid: McGraw-Hill / Interamericana, 2007. ‎ 960 p. ISBN: ‎ 978-8448156190.

MÁRQUEZ, D.; CALDERON, J. Fundamentos de medición de temperatura 2016. Disponível em: <https://www.studocu.com/es-mx/document/universidad-tecnologica-de-pereira/programacion-ii/temp-fundamentoss-medicion/11707465

MILHOMEM, F. O. Cinética de flotação no sistema hematita e quartzo com uso de óleos vegetais. Tese de Doutorado (PPGEM) - Universidade Federal de Ouro Preto — UFOP: Ouro Preto, 2020.

MIZUHATA, M. Electrical conductivity measurement of electrolyte solution. The Electrochemical Society of Japan, v. 90, 10, p. 1-12, 2022.

NILSSON, J. W.; RIEDEL, S. A. Circuitos Eléctricos. Madrid: Pearson Educación S.A., 2005.

OIML — INTERNATIONAL ORGANIZATION OF LEGAL METROLOGY. Standard solutions reproducing the conductivity of electrolytes,1981. Disponible en: <https://www.oiml.org/en/files/pdf_r/r056-e81.pdf/@@ download/file/R056-e81.pdf >.

PRADO, D. R. Porosidade de sistemas polidispersos. Dissertação de Mestrado (Programa de Pós Graduação em Engenharia Mineral) - Universidade Federal de Ouro Preto — UFOP: Ouro Preto, 2015.

PRADO, D. R. et al. On bed porosity of multisized spheroidal particles. Curitiba, Brazilian Journal of Development, v. 8, 2, 2022, p. 14217–14237.

SALEM, H. S. Derivation of the cementation factor (archie’s exponent) and the Kozeny-Carman constant from well log data, and their dependence on lithology and other physical parameters. Society of Petroleum Engineers Inc, 26 p., 1993.

SEGUNDO, A. K. R. et al. A novel low-cost instrumentation system for measuring the water content and apparent electrical conductivity of soils. Sensors, v. 15, 10, p. 25546–25563, 2015.

SIGRIST, L.; DOSSENBACH, O.; IBL, N. On the conductivity and void fraction of gas dispersions in electrolyte solutions. Journal of Applied Electrochemical, v. 10, pp.: 223–228, 1980.

TURNER, J.C.R. Two-phase conductivity. The electrical conductance of liquid-fluidized beds of spheres. Chem. Eng. Science. v. 31, p. 487–492, 1976.

URIBE-SALAS, A.; GOMEZ, C. O.; FINCH, J. A. A conductivity technique for gas and solids holdup determination in three-phase reactors. Chemical Engineering Science, v. 49, 1, p. 1-10, 1994.

YANG, C. et al. Influence of electrode polarization on the potential of DC electrical exploration. China: Journal of Applied Geophysics, v. 149, p. 63-76, 2018.

YU, A. B.; STANDISH, N. An Analytical-Parametric Theory of the Random Packing of Particles. Powder Technology. v. 55, 3, p. 171 – 186, 1988.



How to Cite

Vargas , J. C. G., da Luz, J. A. M., Segundo , A. K. R., & Milhomem , F. de O. (2024). Electroconductometer via Arduino for measurement in aqueous suspensions. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(2), e3179. https://doi.org/10.55905/oelv22n2-064