Effects of laser welding on the martensitic transformation of a shape-memory Ti-Ni alloy


  • Manoel Cândido Júnior
  • Carlos Augusto do Nascimento Oliveira
  • Cezar Henrique Gonzalez
  • Karla Caroline Alves da Silva
  • Oscar Olímpio de Araújo Filho
  • Daniel Wallerstein Figueiroa




laser welding, Ti-Ni alloys, shape memory effect, mechanical properties, martensitic transformations


The objective of this study is to investigate the martensitic transformation behavior of a Ti-Ni alloy subjected to a laser welding process. Materials characterization techniques were used to analyze the influences of this welding procedure on the phase transformation behavior. This study can provide valuable insights for the improvement of Ti-Ni alloy welding processes used for technological applications, such as in the aerospace industry. In this study, samples were prepared under three conditions: thermal treatment at 400°C, thermal treatment at 500°C, and as-received. The characterization techniques used were: Optical Microscopy (OM), Differential Scanning Calorimetry (DSC), Electron Dispersion Spectroscopy (EDS), X-Ray Diffraction (XRD), and Vickers Microhardness (HV). The results allow for analysis of thermoelastic martensitic transformation and variations in the compositions of the alloy elements. The research, in general, aims to repurpose welding waste in Ti-Ni alloys for the production of mini sensors. The enthalpy was higher for the alloy treated at 500°C and welded. The research findings led to the observation of martensitic phase transformation in the laser-welded Ti-Ni alloy, which suggests that it can be used as a sensor/actuator.


WILLIAMS, J. C.; BOYER, R. R. Opportunities and Issues in the Application of Tita-nium Alloys for Aerospace Components. Metals, v. 10, n. 6, p. 705, 2020. Available in: https://doi.org/10.3390/met10060705.

HENRIQUES, VINÍCIUS, A. R. Titanium production for aerospace applications. Jour-nal of Aerospace Technology and Management, v. 1, n. 1, 7-17 p. São José dos Campos, Brasil. Jan. /Jun., 2009. Available at: https://jatm.com.br/jatm/article/view/1/140.

SIMÕES, S.; VIANA, F.; RAMOS, A. S.; VIEIRA, M. T.; VIEIRA, M. Reaction zone formed during diffusion bonding of TiNi to Ti6Al4V using Ni/Ti nanolayers. Journal of Materials Science, v. 48, n. 21, p. 7718, 2013.

FURUYA, Y.; SHIMADA, H. Shape memory actuators for robotic applications. Mate-rials Design, v. 12, 1991, pp. 21-28.

OTSUKA, K.; REN, X. Physical Metallurgy of Ti-Ni based shape memory alloys. Pro-gress in Materials Science, v. 50, 2005, p. 511-678.

JOHNSON, A. Non-Explosive Separation Devices. United States Patent 5,111,955, June 9, 1992.

NESPOLI, A. et al. Design, characterization and perspectives of shape memory alloy elements in miniature sensor proof of concept. Sensors and Actuators A: Physical, v. 218, 2014, p. 142-153.

SINGH, S. et al. Studies on the development of a NiTi-integrated fiber optic sensor and its life cycle behavior. Journal of Intelligent Material Systems and Structures, v. 31, n. 6, p. 869-881, 2020.

LI, H. M. et al. Laser welding of TiNi shape memory alloy and stainless-steel using Ni interlayer. Materials & Design, 2012.

QUINTINO, L.; MIRANDA, R. M. Welding shape memory alloys with NdYAG la-sers. Soldagem & Inspeção [online], v. 17, n. 3, p. 210-217, 2012. Available in: https://doi.org/10.1590/S0104-92242012000300005. Published online September 27, 2012.

MIRSHEKARI, G. R. et al. Laser welding of NiTi shape memory alloy: Comparison of similar and dissimilar joints to AISI 304 stainless steel. Laser and Optical Technology, v. 54, p. 151-158, 2013.

RAKESH, N. et al. Effect of fluxes on weld penetration during TIG welding – A re-view. Materials Today: Proceedings, 2022.

SUN, Z.; PAN, D. Welding of titanium alloys with activation flux. Welding and Joining Science and Technology, v. 9, n. 4, p. 337-344, 2004.

SUN, Q. et al. Study on weld formation and segregation mechanism for dissimilar pulse laser welding of NiTi and Cu wires. Optics & Laser Technology, v. 140, 2021.

HAO, X. et al. Arc welding of titanium alloy to stainless steel with Cu foil as interlayer and Ni-based alloy as filler metal. Journal of Materials Research and Technology, v. 13, p. 48-60, 2021. ISSN 2238-7854. Available in: https://doi.org/10.1016/j.jmrt.2021.04.054.

OU, P. et al. Microstructure and mechanical properties of K-TIG welded dissimilar joints between TC4 and TA17 titanium alloys. Materials Characterization, v. 196, 2023, article 112644. ISSN 1044-5803. Available in: https://doi.org/10.1016/j.matchar.2023.112644.

BAHADOR, A. et al. Asymmetric local deformation, microstructure and superelasticity of friction stir welded Nitinol alloy. Materials Science and Engineering: A, v. 767, 2019, p. 138344. doi: 10.1016/j.msea.2019.138344.

TUISSI, A. et al. Effect of Nd-YAG laser welding on the functional properties of the Ni–49.6at.%Ti. Materials Science and Engineering: A, v. 273–275, 1999, p. 813-817. doi: 10.1016/S0921-5093(99)00422-0.

PONGVITTAYAPANU, K.; SRISRUAL, A.; FAKPAN, K. Effect of thermal cycling and vibration on cracking in Sn-3.0Ag-0.5Cu solder bump. Materials Today: Procee-dings, v. 52, Part 5, 2022.

DASGUPTA, A.; CHEN, O. NASA Fatigue Specimen Weld Joint Inelastic Deforma-tion Analysis. NASA Technical Report, Nº NASA-CR-187864, 1991.

YAN, Z. H.; XU, H.; HUANG, P. F. Multi-scale multi-intensity defect detection in ray image of weld bead. NDT & E International, v. 116, 2020.

HAN, S.; LIU, G.; TANG, X.; XU, L.; CUI, H.; SHAO, C. Effect of molten pool behaviors on welding defects in tandem NG-GMAW based on CFD simulation. Inter-national Journal of Heat and Mass Transfer, v. 195, 2022.

KANNAN, T. D. B.; SATHIYA, P.; RAMESH, T. Experimental investigation and cha-racterization of laser welded NiTinol shape memory alloys. Journal of Manufacturing Processes, v. 25, 2017, p. 253-261. ISSN 1526-6125. doi: 10.1016/j.jmapro.2016.12.006.

LAPLANCHE, G. et al. Effect of temperature and texture on the reorientation of mar-tensite variants in NiTi shape memory alloys. Acta Materialia, v. 127, 2017, p. 143-152. ISSN 1359-6454. doi: 10.1016/j.actamat.2017.01.023.

FEDRIGO, G.; WOLFART, M. Evaluation of the microstructure of titanium alloy Ti6Al4V after heat aging treatment. Federal Institute of Santa Catarina.

ASADI, S. et al. The effect of annealing temperature on microstructure and mechanical properties of dissimilar laser welded superelastic NiTi to austenitic stainless steels ortho-dontic archwires. Journal of the Mechanical Behavior of Biomedical Materials, v. 109, 2020, artigo 103818. doi: 10.1016/j.jmbbm.2020.103818.

KOU, S. Welding metallurgy. New Jersey, USA, v. 431, n. 446, p. 223-225, 2003.

GUIMARÃES, J. R. C.; GOMES, J. C. A metallographic study of the influence of the austenite grain size on martensite kinetics. Acta Metallurgica, v. 26, n. 10, 1978, p. 1591-1596.

OLIVEIRA, C. A. do N. et al. Thermomechanical Analysis on Ti-Ni Shape Memory Helical Springs Under Cyclic Tensile Loads. Materials Research, v. 18, 2015, p. 17-24. doi: 10.1590/1516-1439.334514.

OTSUKA, K.; REN, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Pro-gress in Materials Science, v. 50, n. 5, 2005, p. 511-678.

LAENG, J. J. A. et al. Formation of Ni-Ti phases via solid-state reaction. Physica Scrip-ta, T129, 2007, p. 250-254.

XUE, D. et al. The effect of aging on the B2-R transformation behaviors in Ti-51at%Ni alloy. Intermetallics, v. 19, n. 11, 2011, p. 1752-1758.

OLIVEIRA, J. P.; MIRANDA, R. M.; FERNANDES, F. M. B. Welding and Joining of NiTi Shape Memory Alloys: A Review. Progress in Materials Science, v. 88, 2017, p. 412-466.

VASHISHTHA, H.; JAIN, J. Influence of laser power on precipitate formation and multiple step transformation kinetics in NiTi shape memory alloy weld joints. Journal of Alloys and Compounds, v. 893, 2022.

TOPREK, D.; BELOSEVIC-CAVOR, J.; KOTESKI, V. Ab initio studies of the struc-tural, elastic, electronic and thermal properties of NiTi2 intermetallic. Journal of Physics and Chemistry of Solids, v. 85, 2015, p. 197-205.

GARAY, J. E.; ANSELMI-TAMBURINI, U.; MUNIR, Z. A. Enhance growth of in-termetallic phases in the NiTi system by current effects. Acta Materialia, v. 51, p. 4487–4495, 2003.

LI, G.; YU, T.; ZHANG, N.; CHEN, M. The effect of Ni content on phase transforma-tion behavior of NiTi alloys: An atomistic modeling study. Computational Materials Science, v. 215, 2022.

FRENZEL, J. et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia, v. 58, n. 9, 2010, p. 3444-3458.

WAITZ, T.; KAZYKHANOV, V.; KARNTHALER, H. P. Martensitic phase transfor-mations in nanocrystalline NiTi studied by TEM. Acta Materialia, v. 52, n. 1, 2004, p. 137-147. ISSN 1359-6454.

WAITZ, T.; KAZYKHANOV, V.; KARNTHALER, H. P. Martensitic phase transfor-mations in nanocrystalline NiTi studied by TEM. Acta Materialia, v. 52, n. 1, 2004, p. 137-147. ISSN 1359-6454.

CHROBAK, D.; MORAWIEC, H. Thermodynamic analysis of the martensitic trans-formation in plastically deformed NiTi alloy. Scripta Materialia, v. 44, n. 5, 2001, p. 725-730.

ZHU, J. et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation. Acta Materialia, v. 207, 2021.

XUE, D. et al. The effect of aging on the B2-R transformation behaviors in Ti-51at%Ni alloy. Intermetallics, v. 19, n. 11, 2011, p. 1752-1758.

TIMOFEEVA, E. E. et al. The superelasticity and shape memory effect in Ni-rich Ti-51.5Ni single crystals after one-step and two-step ageing. Materials Science and Engine-ering: A, v. 796, 2020.

KAYA, I. et al. Effects of orientation on the shape memory behavior of Ni51Ti49 single crystals. Materials Science and Engineering: A, v. 686, 2017, p. 73-81.

KAYA, I. et al. Comportamento da memória de forma de monocristais de NiTi orienta-dos por [111] após envelhecimento assistido por estresse. Acta Metalurgica Sinica, v. 29, n. 3, 2016, p. 282-286.

MICHUTTA, J. et al. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates. Acta Materialia, v. 54, n. 13, 2006, p. 3525-3542.

LI, Z.; XIAO, F.; ZUO, S.; ZHOU, Y.; CAI, X.; JIN, X. Insights into the influence of Ni4Ti3 precipitates and martensite transformation on the glide of a[100] dislocation in austenitic NiTi alloys: an atomistic simulation study. Journal of Materials Research and Technology, v. 27, 2023, p. 7548-7561. ISSN 2238-7854. Available in: https://doi.org/10.1016/j.jmrt.2023.10.186.

CHEN, C.-H. et al. Precipitation hardening by nanoscale Ti2Ni phase in high Ti-rich Ti52.6Ni46.8Si0.6 melt-spun ribbon. Journal of Alloys and Compounds, v. 810, 2019.

UCHIL, J.; FERNANDES, F. M. B.; MAHESH, K. K. X-ray diffraction study of the phase transformations in NiTi shape memory alloy. Materials Characterization, v. 58, n. 3, 2007, p. 243-248.

KIM, J. I.; LIU, Y.; MIYAZAKI, S. Ageing-induced two-stage R-phase transformation in Ti–50.9at.%Ni. Acta Materialia, v. 52, n. 2, 2004, p. 487-499.

LI, B. Y.; RONG, L. J.; LI, Y. Y. Porous NiTi alloy prepared from elemental powder sintering. Journal of Materials Research, v. 13, 1998, p. 2847-2851.

WU, S. et al. Pore formation mechanism and characterization of porous NiTi shape me-mory alloys synthesized by capsule-free hot isostatic pressing. Acta Materialia, v. 55, n. 10, 2007, p. 3437-3451.

MASSALSKI, T. B.; OKAMOTO, H.; SUBMANIAN, P. R.; KACPRZAK, L. Dia-gramas de fase de liga binária. ASM International, Materials Park (OH), 1990. p. 2874.

LI, B. Y.; RONG, L. J.; LI, Y. Y.; GJUNTER, V. E. Synthesis of porous Ni–Ti shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure. Acta Materialia, v. 48, n. 15, 2000, p. 3895-3904.

BEYER, J. Recent Advances in the Martensitic Transformations of Ti-Ni Alloys. Collo-que C2, supplément au Journal de Physique, v. 5, n. 111, 1995.

OTSUKA, K.; SHIMIZU, K. Shape Memory Materials: May 31-June 3, 1988, Sunshine City, Ikebukuro, Tokyo, Japan.

OTSUKA, K.; WAYMAN, C. M. Shape Memory Materials. Cambridge University Press, Cambridge, UK, 1998. p. 1-131.

KIM, J. I.; LIU, Y.; MIYAZAKI, S. Ageing-induced two-stage R-phase transformation in Ti-50.9at%Ni. Acta Materialia, v. 52, p. 487–499, 2004.

CISMASIU, C. Shape Memory Alloys. Janeza Tardine 9, 51000 Rijeka, Croatia, Octo-ber 2010. p. 15-183.




How to Cite

Cândido Júnior, M., Oliveira, C. A. do N., Gonzalez, C. H., da Silva, K. C. A., de Araújo Filho, O. O., & Figueiroa, D. W. (2024). Effects of laser welding on the martensitic transformation of a shape-memory Ti-Ni alloy. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(2), e3083. https://doi.org/10.55905/oelv22n2-012




Most read articles by the same author(s)