Variation of infrastructure materials in prostheses on pontic implants and their effect on the dissipation of Von Mises stresses in implants and components

Authors

  • Marcelo Bighetti Toniollo
  • Silvio Pedro da Silva Sakamoto
  • Kalyta Esteves Martins dos Reis
  • Mallú da Silva Faria
  • Luiz Renato Paranhos
  • João Marcos da Costa Ribeiro
  • Andrea Sayuri Silveira Dias Terada

DOI:

https://doi.org/10.55905/oelv22n1-203

Keywords:

dental implants, finite element analysis, fixed partial denture, infrastructure

Abstract

The configuration of fixed partial dentures with a suspended or pontic intermediate element, associated with the use of 2 implants at their ends, is usually found clinically. In a situation with a smaller number of implants supporting an eventual 3-element prosthesis, there is a greater biomechanical demand on the entire system. A possible option to reduce the stresses disseminated to the implants and components is to vary the prosthesis infrastructures. Therefore, the objective of this study was to verify and compare the stresses developed on the implants and components according to the variation of the materials of the infrastructures of the prostheses on implants. The von Mises Equivalent Stresses (VMES) were analyzed for quantitative and qualitative assessment of the areas of greatest biomechanical demand. The experimental groups were varied according to the infrastructure used: Acrylic resin (AR), Lithium disilicate (LD), Type IV gold (Au), Titanium (Ti), Nickel-Chromium (NiCr), Cobalt-Chromium (CoCr) and Zirconia (Zr). The methodology used was the Finite Element Method (FEM), with simulations by the Ansys Workbench 10.0 software program. The results obtained allowed observing that, according to the variation of the material used in the prosthesis, there are different stresses generated in the analyzed ductile structures (implants and components). It can generally be concluded that an inversely proportional relationship was found between the stiffness of the infrastructure material and the stresses generated in the implants and components. Thus, more rigid infrastructures are capable of transmitting less stress to the implants and their components, which would be characterized as the best option in order to preserve the implants and components that are closer to the supporting bone.

References

AGLIETTA, M.; SICILIANO, V.I.; BLASI, A.; SCULEAN, A.; BRÄGGER, U.; LANG, N.P.; SALVI, G.E. Clinical and radiographic changes at implants supporting single-unit crowns (SCs) and fixed dental prostheses (FDPs) with one cantilever extension. A retrospective study. Clinical Oral Implants Research, v. 23, n. 5, p. 550-555, 2012.

ALBAKRY, M.; GUAZZATO, M.; SWAIN, M.V. Biaxial flexural strength, elastic moduli, and x-ray diffraction characterization of three pressable all-ceramic materials. The Journal of Prosthetic Dentistry, v. 89, n. 4, p. 374-380, 2003.

BACCHI, A.; CONSANI, R.L.X.; MESQUITA, M.F.; DOS SANTOS, M.B. Stress distribution in fixed-partial prosthesis and peri-implant bone tissue with different framework materials and vertical misfit levels: a three-dimensional finite element analysis. Journal of oral science, v. 55, n. 3, p. 239-244, 2013.

BATISTA, Victor Eduardo de Souza. Análise das tensões em próteses implantossuportadas esplintadas, variando a localização dos implantes, pôntico e cantilever: estudo pelo método dos elementos finitos tridimensionais. 2015. 142 f. Dissertação (mestrado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Odontologia de Araçatuba, 2015. Disponível em: <http://hdl.handle.net/11449/123983>

BLATT, M.; BUTIGNON, L.E.; BONACHELA, W.C. Análise de elementos finito aplicados a implantodontia – uma nova realidade do virtual para o real. Innovations implant Journal, v. 1, n. 2, p. 52-62, 2006.

BOYER, R.; WELSCH, G.; COLLINGS, E.W. Materials Properties Handbook: Titanium Alloys Novelty. OH: ASM International. 1994.

CARDELLI, P.L.; VERTUCCI, V.; BALESTRA, F.; MONTANI, M.; ARCURI, C. Mechanical evaluation and FEM analysis of stress in fixed partial dentures zirconium-ceramic. Oral & Implantology, v. 6, n. 3, p. 55-62, 2013.

CARTER, D.R.; VAN DER MEULEN, M.C.H.; BEAUPRE, G.S. Mechanical factors in bone growth and development. Bone, v. 18, n. 1, p. S5-S10, 1996.

CHEN, X.Y.; ZHANG, C.Y.; NIE, E.M.; ZHANG, M.C. Treatment planning of implants when 3 mandibular posterior teeth are missing: a 3-dimensional finite element analysis. Implant Dentistry, v. 21, n. 4, p. 340-343, 2012.

CORRÊA, C.B.; MARGONAR, R.; NORITOMI, P.Y.; VAZ, L.G. Mechanical behavior of dental implants in different positions in the rehabilitation of the anterior maxilla. The Journal of Prosthetic Dentistry, v. 3, n. 4, p. 301-309, 2014.

COSME, D.C.; BALDISSEROTTO, S.M.; CANABARRO, S.A.; SHINKAI, R.S. Bruxism and voluntary maximal bite force in young dentate adults. International Journal Prosthodontics, v. 18, n. 4, p. 328-332, 2005.

DE TORRES, E.M.; BARBOSA, G.A.; BERNARDES, S.R.; DE MATTOS, M.G.; RIBEIRO, R.F. Correlation between vertical misfits and stresses transmitted to implants from metal frameworks. Journal of Biomechanics, v. 44, n. 9, p. 1735-9, 2011.

ERKMEN, E.; MERIÇ, G.; KURT, A.; TUNÇ, Y.; ESER, A. Biomechanical comparison of implant retained fixed partial dentures with fiber reinforced composite versus conventional metal frameworks: A 3D FEA Study. Journal of the Mechanical Behavior of Biomedical Materials, v. 4, n. 1, p. 107-116, 2011.

FERREIRA, M.B.; BARÃO, V.A.; FAVERANI, L.P.; HIPÓLITO, A.C.; ASSUNÇÃO, W.G. The role of superstructure material on the stress distribution in mandibular full-arch implant-supported fixed dentures. A CT-based 3D-FEA. Materials Science Engineering C Mater Biol Appl, v. 35, p. 92-99, 2014.

GRAF, H. Occlusal forces during function in occlusion. Research on form and function. Ann Arbor University of Michigan, p. 112-119, 1975.

GUNGOR, M.B.; YILMAZ, H. Evaluation of stress distributions occurring on zirconia and titanium implant-supported prostheses: a three-dimensional finite element analysis. The Journal of Prosthetic Dentistry, v. 116, n. 3, p. 346-355, 2016.

HAKAN, A. Implant-Supported Fixed Partial Prostheses With Different Prosthetic Materials: A Three-Dimensional Finite Element Stress Analysis. Implant Dentistry, v. 27, n. 2, p. 303-310, 2018.

HAMMERLE, C.H.F.; TARNOW, D. The etiology of hard- and soft-tissue deficiencies at dental implants: A narrative review. Journal Of Clinical Periodontology, v. 45, n. S20, p. S267-S277, 2018.

LUTJERING, G.; WILLIAMS, J.C. Titanium-Engineering Materials and Processes. New York: Springer. 2003.

MERIÇ, G.; ERKMEN, E.; KURT, A.; TUNÇ, Y.; ESER, A. Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis. Journal of Dental Sciences, v. 6, n. 1, p. 25–32, 2011.

NATALI, A.N.; PAVAN, P.G.; RUGGERO, A.L. Evaluation of stress induced in peri-implant bone tissue by misfit in multi-implant prosthesis. Dental Materials, v. 22, n. 4, p. 388-395, 2006.

PELLIZZER, E.P.; JUNIOR, J.F.S.; VILLA, L.M.R.; BATISTA, V.E.S.; MELLO, C.C.; ALMEIDA, D.A.F.; HONÓRIO, H.M. Photoelastic stress analysis of splinted and unitary implant-supported prostheses. Applied Physics B, Lasers and Optics, v. 117, n. 1, p. 235-244, 2014.

PESQUEIRA, A.A.; GOIATO, M.C.; FILHO, H.G.; MONTEIRO, D.R.; SANTOS, D.M.; HADDAD, M.F.; PELLIZZER, E.P. The use of stress analysis methods to evaluate the biomechanics of oral rehabilitation with implants. Journal of Oral Implantology, v. 40, n. 2, p. 217-228, 2014.

REZENDE, C.E.E; CHASE-DIAZ M.; COSTA, M.D.; ALBARRACIN, M.L.; PASCHOETO, G.; SOUZA, E.A.C; RUBO, J.H.; BORGES, A.F.S. Stress distribution in single dental implant system: Threedimensional finite element analysis based on an in vitro experimental model. Journal of Craniofacial Surgery, v. 26, n. 7, p. 2196-2200, 2015.

ROMEO, E.; STORELLI, S. Systematic review of the survival rate and the biological, technical, and aesthetic complications of fixed dental prostheses with cantilevers on implants reported in longitudinal studies with a mean of 5 years follow-up. Clinical Oral Implants Research, v. 23, n. S6, p. 39-49, 2012.

SILVA, M.G.; MORI, M.; POIATE JUNIOR, E.; ANDUEZA, A.; VASCONCELOS, A.B.; POIATE, I.A.V.P. Influência da esplintagem de restaurações protéticas fixas sobre implantes na distribuição de tensões em mandíbula edentada posterior. Revista Brasileira de Odontologia, v. 62, n. 3 e 4, p.187-192, 2005.

SKALAK, R. Biomechanical considerations in osseointegrated prostheses. The Journal of Prosthetic Dentistry, v. 49, n. 6, p; 843-848, 1983. Disponível em: https://sci-hub.tw/10.1016/0022-3913(83)90361-x. Acesso em: 25 de setembro de 2018.

SOUMEIRE, J.; DEJOU, J. Shock absorbability of various restorative materials used on implants. Journal of Oral Rehabilitation, v.26, n. 5, p. 394-401, 1999.

STEGAROIU, R.; KUSAKARI, H.; NISHIYAMA, S.; MIYAKAWA, O. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. The International Journal Oral Maxillofacial Implants, v. 13, n. 6, p. 781-790, 1998.

STOICHKOV, B.; KIROV, D. Analysis of the causes of dental implant fracture: A retrospective clinical study. Quintessence International, v. 49, n. 4, p.279-286, 2018.

TONIOLLO, M.B.; MACEDO, A.P.; PUPIM, D.; ZAPAROLLI, D.; DE MATTOS, M.G.C. Three-Dimensional Finite Element Analysis Surface Stress Distribution on Regular and Short Morse Taper Implants Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges. The Journal of Craniofacial Surgery, v. 27, n. 27, p. e276-e280, 2016.

TONIOLLO, M.B.; MACEDO, A.P.; RODRIGUES, R.C.S.; RIBEIRO, R.F.; DE MATTOS, M.D.G. C. Three-dimensional finite element analysis of stress distribution on different bony ridges with different lengths of morse taper implants and prosthesis dimensions. Journal of Craniofacial Surgery, v. 23, n. 6, p. 1888-1892, 2012.

TRINDADE, F.Z.; VALANDRO, L.F.; DE JAGER, N.; BOTTINO, M.A.; KLEVERLAAN, C.J. Elastic Properties of Lithium Disilicate Versus Feldspathic Inlays: Effect on the Bonding by 3D Finite Element Analysis. Journal of Prosthodontics, v. 27, n. 8, p. 741-747, 2018.

VANNOORT, R. Introdução aos materiais dentários. 2ºed. São Paulo: Editora Artmed, 2004.

WATAHA, J.C. Alloys for prosthodontic restorations. The Journal of Prosthetic Dentistry. v. 87, n. 4, p. 351-363, 2002.

ZAPAROLLI, D.; MATTOS, M, G, C. Análise por elementos finitos de próteses tipo protocolo com diferentes materiais de infraestrutura e instaladas em rebordo reabsorvido, 2017. Disponível em: <https://www.teses.usp.br/teses/disponiveis/58/58131/tde-08082018-101232/publico/DO_Danilo_Zaparolli_Original.pdf >. Acesso em: 25 de setembro de 2018.

Published

2024-01-29

How to Cite

Toniollo, M. B., Sakamoto, S. P. da S., dos Reis, K. E. M., Faria, M. da S., Paranhos, L. R., Ribeiro, J. M. da C., & Terada, A. S. S. D. (2024). Variation of infrastructure materials in prostheses on pontic implants and their effect on the dissipation of Von Mises stresses in implants and components. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(1), 3904–3921. https://doi.org/10.55905/oelv22n1-203

Issue

Section

Articles