Investigations on the chemical and bioactivity profile of Bromeliaceae Juss

Authors

  • Mayara Fabiana de Melo Furtado
  • Alex Bruno Lobato Rodrigues
  • Huann Carllo Gentil Vasconcelos
  • Sheylla Susan Moreira da Silva de Almeida
  • Patrick de Castro Cantuária

DOI:

https://doi.org/10.55905/oelv22n1-106

Keywords:

bromeliads, chemodiversity, flora, uses

Abstract

Bromeliaceae Juss., in several cultures for thousands of years it has been used for food, fibers, in ceremonies, medicines and ornamental plants. The phytochemical composition of the species of the family is chemodiverse, with the presence of fatty acids, phenolic compounds, vitamins, triterpenes and enzymes, exerting antibacterial, antimicrobial, hypoglycemic, antileukemic, proteolytic activities, non-polar natural products and production of bioactive peptides. As a result, the family has great chemical and pharmacological potential in order to contribute to scientific knowledge and the development of new drugs.

References

Ajayi, A. M., Coker, A. I., Oyebanjo, O. T., Adebanjo, I. M., Ademowo, O. G. (2022). Ananas comosus (L.) Merr (pineapple) fruit peel extract demonstrates antimalarial, anti-nociceptive and anti-inflammatory activities in experimental models. Journal of Ethnopharmacology. 282:114576. https://doi.org/10.1016/j.jep.2021.114576.

Alkafafy, M. E. M., Ahmed, M. M., Sayed, S. M., El-Shehawi, A. M., Farouk, S. S. Alotaib S. et al. (2021). Ameliorating Effect of Pineapple Juice on the Obesity-Induced Testicular Impairment in Male Wistar Rat. Pakistan Journal of Biological Sciences. 24:1130–1137. https://doi.org/10.3923/pjbs.2021.1130.1137.

Argueta, A., Gallardo Vázquez, M. C. (1994). Atlas de las plantas de la medicina tradi-cional mexicana. México, D.F: Instituto Nacional Indigenista.

Ayil-Gutiérrez, B. A., Amaya-Guardia, K. C., Alvarado-Segura, A. A., Polanco-Hernández, G., Uc-Chuc, M. A., Acosta-Viana, K. Y., et al. (2022). Compound identification from Bromelia karatas fruit juice using gas chromatography–mass spectrometry and evaluation of the bactericidal activity of the extract. Applied Sciences, 12:7275. https://doi.org/10.3390/app12147275.

Baran, A., Keskin, C., Baran, M. F., Huseynova, I., Khalilov, R., Eftekhari, A., et al. (2021). Ecofriendly synthesis of silver nanoparticles using Ananas comosus fruit peels: anticancer and antimicrobial activities. Bioinorganic Chemistry and Applications,1–8. https://doi.org/10.1155/2021/2058149.

Barrientos, R. E., Ahmed, S., Cortés, C., Fernández-Galleguillos, C., Romero-Parra, J., Simirgiotis, M. J., et al. (2020). Chemical fingerprinting and biological evaluation of the endemic chilean fruit Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) by UHPLC-PDA-orbitrap-mass spectrometry. Molecules, 25:3750.

https://doi.org/doi:10.3390/molecules25163750.

Benzing, D. H. (2000). Bromeliaceae: Profile of an Adaptive Radiation. Cambridge: Cambridge University Press.

BFG - The Brazil Flora Group (2022). Brazilian Flora 2020: Leveraging the power of a collaborative scientific network. Taxon 71:178-198. https://doi.org/10.1002/tax.12640.

Cantuária, P. C., Medeiros, T. D. S., Cantuária, M. F., Soares, A. C. S., Silva, B. M. S., Almeida, S. S. M. S., et al. (2022). Você conhece a nomenclatura biológica? Aprenda a forma correta de escrever os nomes dos organismos. Research, Society and Development, 11(3). http://dx.doi.org/10.33448/rsd-v11i2.26378.

Cooper, H. M. (1988). Organizing knowledge syntheses: A taxonomy of literature reviews. Knowledge in Society, 1:104. https://doi.org/10.1007/BF03177550.

Chedier, L. M., Figueiredo, M. R., Kaplan, M. A. C. (2000). Chemical and biological investigations on Nidularium innocentii Lemaire. Anais da Academia Brasileira de Ciências, 72:295–295.

Dantas, A. C. S., Lira, M. M.C., Dutra, L. M., Castro Rodrigues, C. M. S., Reis, S. A. G. B., Castro, R. N. et al. (2022). Hydroalcoholic extract of Encholirium spectabile Mart. (Bromeliaceae) in O/W emulsions as an additive against the UVB radiation. Photochemistry and Photobiology, 99:1028–1036. https://doi.org/10.1111/php.13732.

Dorigoni, P., Ghedini, P. C., Fróes, L. F., Baptista, K. C., Erthur, A. M. B., Baldisserotto, B. et al. (2001). Levantamento de dados sobreplantas medicinais de uso popular no município de São João do Polêsine, RS, Brasil. I - Relação entreenfermidades e espécies utilizadas. Revista Brasileira de Plantas Medicinais, 4:69–79.

Emmanuel, M. M., Didier, D. S. (2012). Traditional knowledge on medicinal plants use by ethnic communities in Douala, Cameroon. European Journal of Medicinal Plants, 2:159–176.

Escanón-Rivera, S. M., Andrade-Cetto, A., Sánchez-Villaseñor, D. (2019). Phytochemical composition and chronic hypoglycemic effect of Bromelia karatas on STZ-NA-induced diabetic rats. Evidence-based Complementary and Alternative Medicine, 1–9. https://doi.org/10.1155/2019/9276953.

Espejel Nava, J. A., Alarcon Aguilar, F., Contreras Ramos, A., Cruz, M., Vega Avila, E., Ortega Camarillo, C. (202). Tillandsia usneoides protects RINm5F cells from streptozotocin- induced apoptosis and stimulates insulin secretion. Pharmacognosy Magazine, 16: 369-374. https://doi.org/10.4103/pm.pm_277_19.

Ferreira, A. M. S., Silva, R. B. L., Cantuária, P. C. (2022). Herbicides registered for control of infesting plants in the cultive of Glycine max (L.) Merr. (soybeans) in Brazil. Research, Society and Development, 11(14). https://doi.org/10.33448/rsd-v11i14.36154.

Gollo, A. L., Tanobe, V. O. A., Melo Pereira, G. V., Marin, O., Bonatto, S. J. R., Silva, S. et al. (2020). Phytochemical analysis and biological activities of in vitro cultured Nidularium procerum, a bromeliad vulnerable to extinction. Scientific Reports,10:7008. https://doi.org/10.1038/s41598-020-64026-z.

Gomes, M., Magalhães, B., Santos, W., Silva Almeida, J. (2022). Influence of seasonality on phytochemical composition, phenolic content and antioxidant activity of Neoglaziovia variegata (Bromeliaceae). Biointerface Research in Applied Chemistry, 12:2889–2904.

https://doi.org/10.33263/BRIAC123.28892904.

Hornung-Leoni, C. T. (2011). Avances sobre usos etnobotánicos de las Bromeliaceae en Latinoamérica. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 10:297–314.

Jorge, L., Ferro, V. O. (1993). Reconhecimento da espécie Bromelia antiacantha Bertol. Características botânicas e fitoquímicas. Revista de Farmácia e Bioquímica da Universidade de São Paulo, 29:60-72.

Lasso, P., Rojas, L., Arévalo, C., Urueña, C., Murillo, N., Barreto, A., et al. (2022). Tillandsia usneoides extract decreases the primary tumor in a murine breast cancer model but not in melanoma. Cancers,14:5383. https://doi.org/10.3390/cancers14215383.

Lira, K. L., Machado, F. D. F., Viana, A. F. S. C., Oliveira, I. S., Silva, F. V., Fernandes, H. B. et al. (2021). Gastroprotective Activity of Neoglaziovia variegata (Arruda) Mez. (Bromeliaceae) in Rats and Mice. Journal of Medicinal Food, 24:1113–1123. https://doi.org/10.1089/jmf.2020.0182.

Lo, M. M., Benfodda, Z., Dunyach-Rémy, C., Bénimélis, D., Roulard, R., Fontaine, J. X. et al. (2022). Isolation and identification of flavones responsible for the antibacterial activities of Tillandsia bergeri Extracts. ACS Omega, 7:35851–35862.

https://doi.org/10.1021/acsomega.2c04195.

Manetti, L. M., Delaporte, R. H., Laverde, Jr. A. (2009). Metabólitos secundários da família bromeliaceae. Química Nova, 32:1885–1897.

Miranda-Nuñez, J. E., Zamilpa-Alvarez, A., Fortis-Barrera, A., Alarcon-Aguilar, F. J., Loza-Rodriguez, H., Gomez-Quiroz, L. E. et al. (2021). GLUT4 translocation in C2C12 myoblasts and primary mouse hepatocytes by an antihyperglycemic flavone from Tillandsia usneoides. Phytomedicine, 89:153622.

https://doi.org/10.1016/j.phymed.2021.153622.

Mondragon, D., Ramírez Morillo, I., Garcia-Franco, J. G. (2011). La Familia Bromeliaceae en México. Universidad Autónoma Chapingo.

Montalvo-González, E., Anaya-Esparza, L. M., Martínez-Olivo, A. O., Abreu-Payrol, J., Sánchez-Burgos, J. A., García-Magaña, M. L. (2021). Physiological and physicochemical behavior of Guamara (Bromelia pinguin) and Cocuixtle (Bromelia karatas) fruits, as well as the antibacterial effect of their pre-purified proteases. Emirates Journal of Food and Agriculture, 33:277-286. https://doi.org/10.9755/ejfa.2021.v33.i4.2686.

Mors, W. B., Rizzini, C. T., Pereira, N. A. (2000). Medicinal plants of Brazil. Algonac: Reference Publications.

Oso, B., Olaoye, I., Ekpo, E., Akhigbe, G. (2022). Antioxidant potentials and anti-inflammatory properties of methanol extracts of ripe and unripe peels of Ananas comosus (L.) Merr. Ovidius University Annals of Chemistry, 33:94–98.

https://doi.org/10.2478/auoc-2022-0013.

Paula, C. C., Guarconi, E. A. E. (2007). Neoglaziovia variegata: a fiber-producing Brazilian Bromeliad. Journal of the Bromeliad Society, 57:119–121.

Pérez-López, M., Flores-Cruz, M., Martínez-Vázquez, M., Soto Hernández, R. M., García-Contreras, R., Padilla-Chacón, D. et al. (). Anti-virulence activities of some Tillandsia species (Bromeliaceae). Botanical Sciences, 98:117–127.

https://doi.org/10.17129/botsci.2380.

Pierce, S. The use of Tillandsia species in ritual adornment in Qosqo, Peru. (2000). Journal of the Bromeliad Society, 50:195–201.

Pontes, M. C., Cavalcante, N. B., Leal, A. E. B. P., Oliveira, A. P., Coutinho, H. D. M., Menezes, I. R. A. et al. (2022). Chemical constituents and antibacterial activity of Bromelia laciniosa (Bromeliaceae): Identification and structural characterization. Phytomedicine Plus, 2:100215. https://doi.org/10.1016/j.phyplu.2022.100215.

Prakoso, Y. A., Setiyo Rini, C., Wirjaatmadja, R. (2020). Efficacy of Aloe vera, Ananas comosus and Sansevieria masoniana cream on the skin wound infected with MRSA. Advances in Pharmacological and Pharmaceutical Sciences, 2018;1–7.

https://doi.org/10.1155/2018/4670569.

Randolph, J. (2009). A Guide to Writing the Dissertation Literature Review. Practical Assessment, Research and Evaluation, 14(13):13.

http://pareonline.net/getvn.asp?v=14&n=13.

Reitz, R. (1983). Bromeliáceas e a malária-bromélia endêmica. Flora Ilustrada Catarinense, Itajaí.

Rodrigues, C. I., Costa, D. M., Santos, A. C. V., Batatinha, M. J. M., Souza, F. V. D., Souza, E. H de et al. (2020). Assessment of in vitro anthelmintic activity and bio-guided chemical analysis of BRS Boyrá pineapple leaf extracts. Venterinary Parasitology, 285:109219. https://doi.org/10.1016/j.vetpar.2020.109219.

Rodrigues, K.F., Bitencourt, T. C., Núñez, J. G., Garcia, H. O., Buhl, B., Padilha, G. L. et al. (2021). Phytochemical profile and biological activities of Bromelia antiacantha extracts. Brazilian Journal of Biology, 84:e255529. https://doi.org/10.1590/1519-6984.255529.

Romero-Garay, M. G., Montalvo-González, E., García-Magaña, M. D. L. (2018). Alimentos Vegetais Autóctonos Iberoamericanos Subutilizado. Disponível em: <https://alimentos-autoctonos.fabro.com.mx/guamara-cocuixtle.html>. Acesso em: 26 jul 2023.

Sandoval-Bucio, E. N., Flores-Cruz, M., Martínez-Bernal, A. Bromélias úteis de México. (2004). Cactáceas y Suculentas Mexicanas, 49:100–115.

Santos, A. C. P., Leda, P. H. O., Talgatti, D. M. (2023). Estudo etnobotânico de plantas medicinais utilizadas no tratamento de distúrbios urinários no município de Oriximiná – Pará, Brasil. Revista Fitos, 17:29–52. http://dx.doi.org/10.32712/2446-4775.2022.1204.

Sahu, D., Yadav, B., Verma, S., Yadav, A. P., Tilak, V. K., Maurya, S. D. (2020). An-tioxidant activity and phytochemical analysis of leaf extracts of pineapple. Jour-nal of Drug Delivery and Therapeutics, 10:165–167.

http://dx.doi.org/10.22270/jddt.v10i5.4397.

Sayed, A., Fahmy, S., Soliman, A., Mohamed, D. (2020). Antinephrolithiatic activity of Ananas comosus extract against expe rimentally induced renal calculi in rats. Pakistan Journal of Pharmaceutical Sciences, 33:1679–1688.

Sen, P., Dollo, M., Choudhury, M. D., Choudhury, D. (2008). Documentation of tradi-tional herbal knowledge of Khamptis of Arunachal Pradesh. Indian Journal of Traditional Knowledge, 7:438–442.

Stefani, T., Garza-González, E., Rivas-Galindo, V. M., Rios, M. Y., Alvarez, L., Camacho-Corona, M. R. (2019). Hechtia glomerata Zucc: Phytochemistry and activity of its extracts and major constituents against resistant bacteria. Molecules, 24:3434. https://doi.org/10.3390/molecules24193434.

Stefani, T., Morales-San, C. P. D. C., Rios, M. Y., Aguilar-Guadarrama, A. B., González-Maya, L., Sánchez-Carranza, J. N. et al. (2020). UPLC–QTOF–MS analysis of cytotoxic and antibacterial extracts of Hechtia glomerata Zucc. Natural Product Research, 36:644–648.

https://doi.org/10.1080/14786419.2020.1793148.

Tallei, T. E., Fatimawali, F., Yelnetty, A., Marfuah, S., Tania, A. D., Kalalo, M. J et al. (2022). Evaluation of the potential for immunomodulatory and anti-inflammatory properties of phytoconstituents derived from pineapple [Ananas comosus (L.) Merr.] peel extract using an in silico approach. The Philippine Journal of Science, 151:397-410. https://doi.org/10.56899/151.01.30.

Torres-Santos, P. T., Farias, I. F., Almeida, M. D., Passos, G. S., Ribeiro, L. A. A., Rolim, L. A. et al. (2021). Acaricidal efficacy and chemical study of hexane extracts of the leaves of Neoglaziovia variegata (Bromeliaceae) against the tick Rhipicephalus microplus. Experimental and Applied Acarology, 84:263–270. https://doi.org/10.1007/s10493-021-00611-9.

Unanma, H. C., Anaduaka, E. G., Uchendu, N. O., Ononiwu, C. P., Ogugua, V. N. (2021). Ananas comosus and Citrus sinensis peels ameliorate CCl4-induced liver injury in Wistar rats. Scientific African, 14:e01026. https://doi.org/10.1016/j.sciaf.2021.e01026.

Uzor, P. F., Ishiwu, B. U., Nwodo, N. J. (2020). In vivo antimalarial effect of Ananas comosus (L.) Merr (Bromeliaceae) fruit peel, and gas chromatography-mass spectroscopy profiling: A possible role for polyunsaturated fatty acid. Tropical Journal of Pharmaceutical Research, 19:137–145. http://dx.doi.org/10.4314/tjpr.v19i1.21.

Vasconcelos, A. L., Vasconcelos, A. L., Ximenes, E. A., Randau, K. P. (2013). Tillandsia recurvata L. (Bromeliaceae): aspectos farmacognósticos. Revista de Ciências Farmacêuticas Básica e Aplicada, 34(2):151-159.

Vieira-de-Abreu, A., Amendoeira, F. C., Gomes, G. S., Zanon, C., Chedier, L. M., Figueiredo, M. R. et al. (2005). Anti-allergic properties of the Bromeliaceae Nidularium procerum: inhibition of eosinophil activation and influx. International Immunopharmacology, 5:1966–1974.

Villanueva-Alonzo, H. J., Polanco-Hernández, G. M., Lizama-Uc, G., Acosta-Viana, K. Y., Alvarado-Segura, A. A. (2019). Proteolytic activity of wild fruits of Bromelia karatas L. of Yucatán, Mexico. La Revista Chapingo Serie Ciencias Forestales y del Ambiente, 25:157–168.

Witherup, K. M., McLaughlin, J. L., Judd, R. L., Ziegler, M. H., Medon, P. J., Keller, W. J. (1995). Identification of 3-hydroxy-3-methylglutaric acid (HMG) as a hypoglycemic principle of Spanish moss (Tillandsia usneoides). Journal of Natural Products, 58:1285–1290.

Published

2024-01-18

How to Cite

Furtado, M. F. de M., Rodrigues, A. B. L., Vasconcelos, H. C. G., de Almeida, S. S. M. da S., & Cantuária, P. de C. (2024). Investigations on the chemical and bioactivity profile of Bromeliaceae Juss. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(1), 2037–2058. https://doi.org/10.55905/oelv22n1-106

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>