Anaerobic digestion of vinasse improves its use as a liquid fertilizer

Authors

  • Rubens de Carvalho Filho
  • André Luis Gomes Simões
  • Ana Paula Jambers Scandelai
  • Liliane Scabora Mioto
  • Paulo Sérgio Lourenço de Freitas
  • Marcelo Alessandro Araújo
  • Marcelino Luiz Gimenes
  • Daniel Tait Vareschini

DOI:

https://doi.org/10.55905/oelv22n1-027

Keywords:

vinasse, anaerobic treatment, pollution indicators, microelements

Abstract

The global demand for exploiting the potential of renewable biofuel production is increasing. When countries with large agricultural areas produce ethanol, they also generate a harmful byproduct called vinasse. Vinasse is a dark brown effluent that contains a high amount of organic matter, has an acidic nature, and is rich in mineral salts. Managing this effluent poses a challenge due to its significant volume, which ranges from 8 to 20 liters per liter of ethanol produced. Traditionally, raw vinasse has been applied directly to the soil as a liquid fertilizer. However, this practice, without proper guidance, can lead to soil degradation, micronutrient imbalance, pH change and excessive accumulation of organic matter. To resolve these issues and still use vinasse as a fertilizer, the process of anaerobic degradation of vinasse in biodigesters was analyzed. The resulting treated effluent, known as digested vinasse, was then compared to raw vinasse in terms of pollution parameters and the balance of minerals crucial for sugarcane cultivation. The results demonstrated a significant reduction in the organic load of vinasse, with a removal of chemical oxygen demand (COD) ranging from 66% to 85%. After applying the digested vinasse to sugarcane like cultivation soil, a noticeable decrease in the environmental impact caused by excessive organic matter was observed. Additionally, the study found that important nutritional elements such as sodium (Na) did not have any adverse effects or accumulate excessively when compared to calcium (Ca) and magnesium (Mg). In conclusion, the research demonstrates that the anaerobic degradation of vinasse in biodigesters can effectively reduce its organic load and mitigate the environmental impact associated with the direct application of raw vinasse to agricultural soils

References

Alves, P.R.L., Natal-da-Luz, T., Sousa, J.P., Cardoso, E.J.B.N., 2015. Ecotoxicological characterization of sugarcane vinasses when applied to tropical soils. Sci. Total Environ. 526, 222-232. https://doi.org/10.1016/j.scitotenv.2015.03.150.

Andreoli, C.V., Ferreira, A.C., Chernicharo, C.A.L., Borges, E.S.M., 2003. Secagem e higienização de lodos com aproveitamento do biogás, in: Cassini, S.T. (Coord.), Digestão de resíduos sólidos orgânicos e aproveitamento do biogás, Rio de Janeiro: ABES, RiMa, pp. 120-165. [in Portuguese].

APHA (American Public Health Association), AWWA (American Water Works Association), WEF (Water Environment Federation), 1998. Standard methods for the examination of water and wastewater, 20th ed. APHA, USA.

Barros de, V.G., Duda, R.M., Oliveira de, R.A. da. 2016. Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge, Brazilian J. Microbiol. 47, 628-639. https://doi.org/10.1016/j.bjm.2016.04.021.

Barros de, V.G., Duda, R.M., Vantini, J. da S., Omori, W. P., Ferro, M. I. T., Oliveira, R. A. 2017. da. Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria. Bioresource Technology, 244, 371–381. https://doi.org/10.1016/j.biortech.2017.07.106.

Boncz, M.A., Formagini, E.L., Santos, L.D.S., Marques, R.D, Paulo, P.L., 2012. Application of urea dosing for alkalinity supply during anaerobic digestion of vinasse, Water Sci. Technol. 66, 2453-2460. https://doi.org/10.2166/wst.2012.476.

Braga, A.F.M., Pereira, M.B.O.C., Zaiat, M., Silva, G.H.R., Fermoso, F.G. 2018. Screening of trace metal supplementation for black water anaerobic digestion. Environ. Technol., 33(39), 1776-1785. https://doi:10.1080/09593330.2017.1340343.

Brazil. IBAMA - Brazilian Institute for the Environment and Renewable Natural Resources Portaria nº 323, de 29 de novembro de 1978. http://www.ibama.gov.br/sophia/cnia/legislacao/MI/PT0323-291178.PDF (accessed 19 april 2021). [in Portuguese].

Brito, F.L., Rolim, M.M., Pedrosa, E.M.R., 2009. Efeito da aplicação de vinhaça nas características químicas de solos da zona da mata de Pernambuco. Rev. Bras. Ciências Agrárias - Brazilian J. Agric. Sci. https://doi.org/10.5039/agraria.v4i4a14. [in Portuguese].

Cabrera-Díaz, A., Pereda-Reyes, I., Dueñas-Moreno, J., Véliz-Lorenzo, E., Díaz-Marrero, M.A., Menéndez-Gutiérrez, C.L. Oliva-Merencio, D., Zaiat, M., 2016. Combined treatment of vinasse by an upflow anaerobic filter-reactor and ozonation process, Brazilian J. Chem. Eng. 33, 753-762. https://doi.org/10.1590/0104-6632.20160334s20150268.

Cabrera-Díaz, A., Pereda-Reyes, I., Oliva-Merencio, D., Lebrero, R., Zaiat, M., 2017. Anaerobic digestion of sugarcane vinasse through a methanogenic UASB reactor followed by a packed bed reactor, Appl. Biochem. Biotechnol. 183, 1127-1145. https://doi.org/10.1007/s12010-017-2488-2.

Centurión, R.E.B., Moraes, V.A., Percebom, C.M., Ruiz, R.T., 1989. Destinação final da

vinhaça produzida por destilarias autônomas e anexas, enquadradas no programa

nacional do álcool.Anais do XI Congresso Brasileiro de Engenharia Sanitária e Ambiental. Fortaleza,Ceará. [in Portuguese].

CETESB (São Paulo State Environmental Company), 2015. Norma P4.231: Vinhaça – Critérios e procedimentos para aplicação no solo agrícola [Stillage - Criteria and procedures for agricultural soil application], 3ed.. CETESB, São Paulo. [in Portuguese].

Chernicharo, C.A.L., 2007. Anaerobic Reactors, in: von Sperling, M (Coord.), Biological Wastewater Treatment Series. IWA Publishing, Belo Horizonte, v. 1, charpter 4. [in Portuguese]. ISBN 978-18-433-9164-7.

Christofoletti, C.A., Escher, J.P., Correia, J.E., Marinho, J.F.U., Fontanetti, C.S., 2013. Sugarcane vinasse: environmental implications of its use. Waste Manag. 33, 2752–2761. https://doi.org/10.1016/j.wasman.2013.09.005.

Cioabla, A.E., Ionel, I., Dumitrel, G.A., Popescu, F., 2012. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol. Biofuels. 5, 39-47. https://doi.org/10.1186/1754-6834-5-39.

CONAB (National Supply Company), 2023. Available in: https://www.conab.gov.br/info- agro/safras/cana (accessed august, 2023). [in Portuguese].

Deublein, D., Steinhauser, A. (Eds.), 2008. Biogas from Waste and Renewable Resources: An Introduction. WILEY-VHC Verlag GmbH & Co. KGaA, Weinheim. ISBN 978-35-276-3279-4.

do Carmo, J.B., Filoso, S., Zotelli, L.C., de Sousa-Neto, E.R., Pitombo, L.M., Duarte-Neto, P.J., et al., 2013. Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy. 5:267–80. https://doi.org/10.1111/j.1757-1707.2012.01199.x.

Elia-Neto, A. 2016. Estado da arte da vinhaça. In: ÚNICA (União da Indústria da Cana de Açúcar), 2º Workshop “Resíduos urbanos e agrícolas: energia, reciclagem de nutrientes e produção de fertilizantes”, Campinas - SP. Available in: http://unica.com.br/download.php?idSecao=17&id=21743421. (accessed August 10, 2018). [in Portuguese].

Elia-Neto, A., Nakahodo, T., 1995. Caracterização físico-química da vinhaça projeto - 9500278. Relatório técnico da seção de tecnologia de tratamento de águas do centro de tecnologia. Piracicaba, Copersucar. [in Portuguese].

Ensinas, A.V., Modesto, M., Nebra, S.A., Serra, L., 2009. Reduction of irreversibility generation in sugar and ethanol production from sugarcane. Energy. 34, 680-688. https://doi.org/10.1016/j.energy.2008.06.001.

Espinosa A, Rosas L, Ilangovan K, Noyola A., 1995. Effect of trace metals on the anaerobic degradation of volatile fatty acids in molasses stillage. Water Science and Technology. 32:121-9.

Ferraz Júnior, A.D.N., Koyama, M.H., Araújo Júnior, M.M., Zaiat, M., 2016. Thermophilic anaerobic digestion of raw sugarcane vinasse. Renew. Energy. 89, 245-252. https://doi.org/10.1016/j.renene.2015.11.064.

Ferreira, E.S., Monteiro, A.O., 1987. Efeitos da Aplicação da vinhaça nas propriedades químicas, físicas e biológicas do solo, Boletim Técnico, n. 26. Copersucar, Piracicaba. [in Portuguese].

Fuess, L.T., Garcia, M.L., 2014. Implications of stillage land disposal: A critical review on the impacts of fertigation. J. Environ. Manage. 145, 210-229. https://doi.org/10.1016/j.jenvman.2014.07.003.

Fuess, L.T., Garcia, M.L., Zaiat, M., 2018. Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Sci. Total Environ. 634, 29-40. https://doi.org/10.1016/j.scitotenv.2018.03.326.

Fuess, L.T., Rodrigues, I.J., Garcia, M.L., 2017. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 52, 1063–1072. https://doi.org/10.1080/10934529.2017.1338892.

Hach Company, 1996. Procedures Manual of Spectrophotometer DR/2010. Hach Company, Loveland.

Hach Company, 2007. Procedures Manual of Spectrophotometer DR/2800. Hach Company, Loveland.

IBGE (Brazilian Institute of Geography and Statistics), 2007. Manual técnico de pedologia, 2. ed. IBGE, Rio de Janeiro. https://doi.org/9788524037229. [in Portuguese].

IBGE (Brazilian Institute of Geography and Statistics), 2016. Sinopse do Censo demográfico 2010 [Synopsis of the 2010 census]. Available in: http://www.censo2010.ibge.gov.br/sinopse/ index.php?dados=10&uf=00, (accessed December 3, 2019). [in Portuguese].

INMET (National Institute of Meteorology), w. d. Meteorological Database for Teaching and Research. Available in: http://www.inmet.gov.br/projetos/rede/pesquisa/ (accessed December 20, 2018). [in Portuguese].

Janke, L., Leite, A. F., Batista, K., Silva, W., Nikolausz, M., Nelles, M., Stinner, W. 2016c. Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability. Bioresource Technology, 217, 10–20. doi:10.1016/j.biortech.2016.01.110.

Janke, L., Leite, A. F., Batista, K., Weinrich, S., Sträuber, H., Nikolausz, M., Nelles, M., Stinner, W. 2016b. Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: Effects of urea supplementation and sodium hydroxide pretreatment. Bioresource Technology, 199, 235–244. doi:10.1016/j.biortech.2015.07.117.

Janke, L., Leite, A.F., Nikolausz, M., Schmidt, T., Liebetrau, J., Nelles, M., Stinner, W. 2015. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing. International Journal of Molecular Sciences, 16(9), 20685–20703. doi:10.3390/ijms160920685.

Janke, L., Leite, A.F., Nikolausz, M., Radetski, C.M., Nelles, M., Stinner, W. 2016a. Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse. Waste Management, 48, 199–208. doi:10.1016/j.wasman.2015.11.007.

Janke, L., Weinrich, S., Leite, A. F., Schüch, A., Nikolausz, M., Nelles, M., Stinner, W. 2017. Optimization of semi-continuous anaerobic digestion of sugarcane straw co-digested with filter cake: Effects of macronutrients supplementation on conversion kinetics. Bioresource Technology, 245, 35–43. doi:10.1016/j.biortech.2017.08.084.

Janke, L., Weinrich, S., Leite, A. F., Sträuber, H., Radetski, C.M., Nikolausz, M., Nelles, M., Stinner, W. 2018. Year-round biogas production in sugarcane biorefineries: Process stability, optimization and performance of a two-stage reactor system. Energy Conversion and Management, 168, 188–199. doi:10.1016/j.enconman.2018.04.101.

Janke, L., Weinrich, S., Leite, A.F., Terzariol, F.K., Nikolausz, M., Nelles, M., Stinner, W. 2016d. Improving anaerobic digestion of sugarcane straw for methane production: Combined benefits of mechanical and sodium hydroxide pretreatment for process designing. Energy Conversion and Management, 141, 378–389. doi:10.1016/j.enconman.2016.09.083.

Lettinga, G., Hulshoff, P.L.W., Zeeman, G., 1996. Biological Wastewater Treatment. Part I: Anaerobic Wastewater Treatment, first edition. Wageningen Agricultural University, Wageningen.

López-González, L.M., Pareda-Reyes, I., Romero-Romero, O., 2017. Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. Waste Manag. 68, 139-145. https://doi.org/10.1016/j.wasman.2017.07.016.

Lourenço, K.S., Rossetto, R., Vitti, A.C., Montezano, Z.F., Soares, J.R., Sousa, R. de M., do Carmo, J.B., Kuramae, E.E., Cantarella, H., 2019. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Sci. Total Environ. 650, 1476-1486. https://doi.org/10.1016/j.scitotenv.2018.09.037.

Maillard, L.C., 1913. Formation de matières humiques par action de polypeptides sur sucres. C. R. Hebd. Séance. Acad. Sci. 156, 1159-1160.

Marcato, A.C. de C., Souza, C.P. de, Paiva, A.B. de, Eismann, C.E., Navarro, F.F., Camargo, A.F.M., Menegário, A.A., Fontanetti, C.S., 2019. Hybrid treatment system for remediation of sugarcane vinasse. Sci. Total Environ. 659, 115-121. https://doi.org/10.1016/j.scitotenv.2018.12.252.

Marques, J.D.O., Luizão, J.L., Teixeira, W.G., Sávio José Filgueiras Ferreira, S.J.F., 2012. Variações do Carbono Orgânico Dissolvido e de Atributos Físicos do Solo Sob Diferentes Sistemas de Uso da Terra na Amazônia Central. Revista Brasileira de Ciência do Solo. 36, 611-622. http://dx.doi.org/10.1590/S0100-06832012000200030. [in Portuguese].

Matos, A.T. de, Gariglio, H.A. de A., Lo Monaco, P.A.V., 2013. Deslocamento miscível de cátions provenientes da vinhaça em colunas de solo. Rev. Bras. Eng. Agrícola e Ambiental. 17, 743-749. https://doi.org/10.1590/S1415-43662013000700008.

Meyer, J., Rein, P., Turner, P., Mathias, K., Mc Gregor, C., 2011. Good Management Practices Manual for the Cane Sugar Industry (Final), PGBI Sugar and Bio Energy, Johannesburg, South Africa.

Moraes, B.S., Junqueira, T.L., Pavanello, L.G., Cavalett, O., Mantelatto, P.E., Bonomi, A., Zaiat, M., 2014. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense? Appl. Energy. 113, 825-835. https://doi.org/10.1016/j.apenergy.2013.07.018.

Moraes, B.S., Zaiat, M., Bonomi, A., 2015. Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renew. Sustain. Energy Rev.44, 888-903. https://doi.org/10.1016/j.rser.2015.01.023.

Moreira, W.H., Tormena, C.A., Betioli Junior, E., Figueiredo, G.C., Silva, Á.P. da, Giarola, N.F.B., 2014. Quantification of the least limiting water range in an oxisol using two methodological strategies. Rev. Bras. Ciência do Solo. 38, 1772-1783. https://doi.org/10.1590/S0100-06832014000600012.

OECD (Organization for Economic Co-operation and Development), FAO (Food and Agriculture Organization), 2018. OECD-FAO Agricultural Outlook 2018-2027. OECD Publishing, Rome. https://doi.org/10.1787/agr_outlook-2018-en.

Oliveira, B.G. de, Carvalho, J.L.N., Cerri, C.E.P., Cerri, C.C., Feigl, B.J., 2013. Soil greenhouse gas fluxes from vinasse application in Brazilian sugarcane areas. Geoderma. 200(201), 77–84. https://doi.org/10.1016/j.geoderma.2013.02.005.

Parsaee, M., Kiani Deh Kiani, M., Karimi, K., 2019. A review of biogas production from sugarcane vinasse. Biomass and Bioenergy, 122, 117–125.

Pathak, H., Joshi, H.C., Chaudhary, A., Chaudhary, R., Kalra, N., Dwiwedi, M.K., 1999. Soil amendment with distillery effluent for wheat and rice cultivation. Water. Air. Soil Pollut. 113, 133-140. https://doi.org/10.1023/A:1005058321924.

Pavi, S., Kramer, L.E., Gomes, L.P., Miranda, L.A.S. 2017. Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Biores. Technol., 228, 362-367. https://doi.org/10.1016/j.biortech.2017.01.003.

Pedro-Escher, J., Christofoletti, C.A., Ansoar-Rodríguez, Y., Fontanetti, C.S., 2016. Sugarcane vinasse, a residue of ethanol industry: toxic, cytotoxic and genotoxic potential using the allium cepa test, J. Environ. Prot. 7, 602. https://doi.org/10.4236/jep.2016.75054.

Petruzzelli, G., 1989. Recycling wastes in agriculture: heavy metal bioavailability. Agric. Ecosyst. Environ. 27, 493-503. https://doi.org/10.1016/0167-8809(89)90110-2.

Plavšić, M., Ćosović, B., Lee, C., 2006. Copper complexing properties of melanoidins and marine humic material. Sci. Total Environ. 366, 310–319. https://doi.org/10.1016/j.scitotenv.2005.07.011.

Polprasert, C., 2007. Biofuels production, in: Polprasert, C., Organic waste recycling: technology and management, third edition. IWA Publishing, London. pp. 145-215. ISBN 978-18-433-9121-0.

Prasad, M.N.V., Shih, K., 2016. Environmental Materials and Waste: Resource Recovery and Pollution Prevention, Academic Press. ISBN 978-01-280-3837-3.

Ribas, M.M.F., Chinalia, F.A., Pozzi, E., Foresti, E., 2009. Microbial succession within an Anaerobic Sequencing Batch Biofilm Reactor (ASBBR) treating cane vinasse at 55°C. Brazilian Arch. Biol. Technol. 52, 1027-1036.

Richards, L.A. (Ed.), 1954. Diagnosis and improvement of saline and alkali soils. USDA, Washington.

Rocha, M.H., Lora, E.E.S., Venturini, O.J., 2007. Life cycle analysis of different alternatives for the treatment and disposal of ethanol vinasse. Proc. Int. Soc. Sugar Cane Technol. 108, 88-93.

Rodrigues Reis, C.E., Hu, B., 2017. Vinasse from sugarcane ethanol production: Better treatment or better utilization? Front. Energy Res. 5, 1-7. https://doi.org/10.3389/fenrg.2017.00007.

Rolim, M.M., Lyra, M.R.C.C., Duarte, A. de S., de Medeiros, P.R.F., e Silva, Ê.F. de F., Pedrosa, E.M.R., 2013. Influência de uma lagoa de distribuição de vinhaça na qualidade da água freática. Rev. Ambiente & Água 8, 155-171. https://doi.org/10.4136/ambi-agua.1014.

Salomon, K.R., Silva Lora, E.E., 2009. Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass and Bioenergy 33, 1101-1107. https://doi.org/10.1016/j.biombioe.2009.03.001.

Santos, F.S., Ricci, B.C., França Neta, L.S., Amaral, M.C.S., 2017. Sugarcane vinasse treatment by two-stage anaerobic membrane bioreactor: Effect of hydraulic retention time on changes in efficiency, biogas production and membrane fouling. Bioresour. Technol. 245, 342-350. https://doi.org/10.1016/j.biortech.2017.08.126.

Santos, H.G. dos; Jacomine, P.K.T.; Anjos, L.H.C. dos; Oliveira, V.A. de; Lumbreras, J.F. Coelho, M.R.; Almeida, J.A. de; Araújo Filho, J.C. de; Oliveira, J.B. de; C., Cunha, T.J.F. Brazilian Soil Classification System, Embrapa Soils, 5. ed., rev and exp. – Brasília, DF: Embrapa, 2018.

Santos, P.S., Zaiat, M., Oller do Nascimento, C.A., Fuess, L.T., 2019. Does sugarcane vinasse composition variability affect the bioenergy yield in anaerobic systems? A dual kinetic-energetic assessment. J. Clean. Prod. 240, 1-11. https://doi.org/10.1016/j.jclepro.2019.118005.

Silva, A.P.M., Bono, J.A.M., Pereira, F.A.R., 2014. Aplicação de vinhaça na cultura da cana-de-açúcar: Efeito no solo e na produtividade de colmos. Rev. Bras. Eng. Agrícola e Ambiental. 18, 38-43. https://doi.org/10.1590/S1415-43662014000100006.

Silva, M.A.S., Griebeler, N.P., Borges, L.C., 2007. Uso de vinhaça e impactos nas propriedades do solo e lençol freático. Rev. Bras. Eng. Agrícola e Ambient. 11, 108–114. https://doi.org/10.1590/S1415-43662007000100014.

Sivaloganathan, P., Murugaiyan, B., Appavou, S., Dharmaraj, L., 2013. Effect of Dilution of Treated Distillery Effluent (TDE) on Soil Properties and Yield of Sugarcane. Am. J. Plant Sci. 4, 1811-1814. https://doi.org/10.4236/ajps.2013.49222.

Speece, R.E., Parkin, G.F., Gallagher, D. 1983. Nickel stimulation of anaerobic digestion. Water research. 17:677-83.

Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., 2017. Manual de métodos de análise de solo, 3. ed. Embrapa, Brasília. Avaliable in: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1085209. (accessed January 25, 2017). [in Portuguese].

Tejada, M., Gonzalez, J.L., 2006. Effects on two beet vinasse forms on soil physical

properties and soil loss. Catena 68, 41-50. https://doi.org/10.1016/j.catena.2006.04.025.

Tejada, M., Moreno, J.L., Hernandez, M.T., Garcia, C., 2007. Application of two beet vinasse forms in soil restoration: Effects on soil properties in an arid environment in southern Spain. Agric. Ecosyst. Environ. 119, 289–298. https://doi.org/10.1016/j.agee.2006.07.019.

USEPA (United States Environmental Protection Agency), 2012. Guidelines for water reuse, EPA 600/R-12/618. USEPA, Washington. Available in: http://www3.epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-1530.pdf. (accessed July 28, 2018).

von Sperling, M., 2007. Biological Wastewater Treatment Series Vol. 1: Wastewater Characteristics, Treatment and Disposal, BiologicalWastewater Treatment Series. IWA Publishing, Belo Horizonte. [in Portuguese]. ISBN 978-18-433-9161-6.

von Sperling, M., 2014. Introdução à qualidade das águas e ao tratamento de esgotos, 4. ed. Editora UFMG, Belo Horizonte. [in Portuguese]. ISBN 978-85-423-0053-6.

Wedzicha, B.L., Kaputo, M.T., 1992. Melanoidins from glucose and glycine: composition, characteristics and reactivity towards sulphite ion. Food Chem. 43, 359–367. https://doi.org/10.1016/0308-8146(92)90308-O.

WHO (World Health Organization), 2006. WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater: Volume I - Policy and Regulatory Aspects. World Health. https://doi.org/10.1007/s13398-014-0173-7.2.

Xu, R., Zhang, K., Liu, P., Khan, A., Xiong, J., Tian, F., et al. 2018. A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresour Technol., 247, 1119–1127. https://doi.org/10.1016/j.biortech.2017.09.095.

Zandvoort, M.H., van Hullebusch, E.D., Fermoso, F.G., Lens, P.N.L. 2006. Trace Metals in Anaerobic Granular Sludge Reactors: Bioavailability and Dosing Strategies. Engineering in Life Sciences. 6:293-301. https://doi.org/10.1002/elsc.200620129.

Zhang, L., Lee, Y.W., Jahng, D. 2011. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace element. Biores. Technol., 102, 5048-5059. https://doi.org/10.1016/j.biortech.2011.01.082.

Zolin, C.A., Paulino, J., Bertonha, A., Freitas, P.S.L. de Folegatti, M.V., 2011. Estudo exploratório do uso da vinhaça ao longo do tempo. I. Características do solo. Rev. Bras. Eng. Agrícola e Ambiental. 15, 22–28. https://doi.org/10.1590/S1415-43662011000100004.

Published

2024-01-16

How to Cite

de Carvalho Filho, R., Simões, A. L. G., Scandelai, A. P. J., Mioto, L. S., de Freitas, P. S. L., Araújo, M. A., Gimenes, M. L., & Vareschini, D. T. (2024). Anaerobic digestion of vinasse improves its use as a liquid fertilizer. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(1), 474–509. https://doi.org/10.55905/oelv22n1-027

Issue

Section

Articles

Most read articles by the same author(s)