Innovative strategy to improve β-carotene recovery from carrot peel extracts: ultrafiltration with layer-by-layer graphene oxide membrane coating

Authors

  • Nicole Novelli do Nascimento
  • Laiza Bergamasco Beltran
  • Fernanda Novelli Negrão
  • João Vitor de Araujo Silva
  • Rosângela Bergamasco
  • Angélica Marquetotti Salcedo Vieira

DOI:

https://doi.org/10.55905/oelv21n12-196

Keywords:

β-carotene, fouling, membrane technology, carrot peels, antioxidant activity, layer-by-layer membrane modification

Abstract

Reuse of carrot peels from industrial residues has great potential for a high value-added by-product, such as the recovery and concentration of β-carotene. The use of this compound in food is an alternative to synthetic antioxidants. Commercial modified polymeric membranes are an eco-friendly, more economical, and fouling-reduced way to obtain this compound compared to other methods used. Thus, the objective of the present study was to recover it from the carrot peel extract obtained and a triple extraction with 70% ethanol. Ultrafiltration of this extract was performed on layer-by-layer membrane modification with sulfonic groups, polyethylene glycol and graphene oxide functionalized with tannic acid. Quantitative analysis showed purification of 70.35% of β-carotene in the first filtration cycle. This showed antioxidant activity by FRAP (131.30 µmol TE/g sample) and Folin Ciocauteu (129.84 mg/L). Characterization and performance analyze showed that the modified membrane has antifouling action with flux recovery rate of 89.24%. Thus, the modified membrane can be considered an emerging technology since it has low energy consumption and ecological methodology for the recovery and purification of β-carotene.

References

Abdel-Karim, A., Leaper, S., Alberto, M., Vijayaraghavan, A., Fan, X., Holmes, S. M., … Gorgojo, P. (2018). High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications. Chemical Engineering Journal, 334(October 2017), 789–799. https://doi.org/10.1016/j.cej.2017.10.069

Abdul, F., Juber, H., Abbas, Z., Bridgid, J., Fui, L., Swee, C., … Leng, T. (2021). The prospect of synthesis of PES / PEG blend membranes using blend NMP / DMF for CO2 / N2 separation. Journal of Polymer Research. https://doi.org/10.1007/s10965-021-02500-6

Adib, H., & Raisi, A. (2020). Surface modification of a PES membrane by corona air plasma-assisted grafting of HB-PEG for separation of oil-in-water emulsion. 17143–17153. https://doi.org/10.1039/d0ra02032j

Ahmad, A. L., Otitoju, T. A., & Ooi, B. S. (2019). Hollow fiber (HF) membrane fabrication: A review on the effects of solution spinning conditions on morphology and performance. Journal of Industrial and Engineering Chemistry, 70, 35-50.

Arias, A., Feijoo, G. & Moreira, M. T. (2022) Exploring the potencial of antioxidants from fruits and vegetables and strategies for their recovery. Innovative Food Science and Emerging Technologies,77, 102974. https://doi.org/10.1016/j.ifset.2022.102974

Ayyaru, S., & Ahn, Y. H. (2017). Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes. Journal of Membrane Science, 525(October 2016), 210–219. https://doi.org/10.1016/j.memsci.2016.10.048

Difonzo, G., Aresta, A., Cotugno, P., Ragni, R., Squeo, G., Summo, C., ... & Caponio, F. (2021). Supercritical CO2 extraction of phytocompounds from olive pomace subjected to different drying methods. Molecules, 26(3), 598.

Elik, A., Yanık, D. K., & Göğüş, F. (2020). Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. Lwt, 123, 109100.

Encalada, A. M. I., Pérez, C. D., Gerschenson, L. N., Rojas, A. M., & Fissore, E. N. (2019). Gelling pectins from carrot leftovers extracted by industrial-enzymes with ultrasound pretreatment. LWT, 111, 640-646.

FAO (2017). www.fao.org/statistics

Fikselová, M., Šilhár, S., Mareček, J., & Frančáková, H. (2008). Extraction of carrot (Daucus carota L.) carotenes under different conditions. Czech Journal of Food Sciences, 26(4), 268-274.

Grootaert, C., Vansteenland, M., Vandemoortele, A., Camp, J. Van, & Meulenaer, B. De. (2021). Method for beta-carotene extraction from processed baby foods as a model for plant-based fatty food products. Food Research International, 144(March), 110332. https://doi.org/10.1016/j.foodres.2021.110332

Hu, J., Chen, Y., Lu, J., Fan, X., Li, J., Li, Z., ... & Liu, W. (2020). A self-supported gel filter membrane for dye removal with high anti-fouling and water flux performance. Polymer, 201, 122531.

Huang, J. Zhang, K., Wang, K., Xie, Z., Ladewig, B. & Wang. H. (2012) Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. Journal of Membrane Science, 423-424, 362-370.. http://dx.doi.org/10.1016/j.memsci.2012.08.029

Ilyas, H., Shawuti, S., Siddiq, M., Niazi, J. H., & Qureshi, A. (2019). PEG functionalized graphene oxide-silver nano-additive for enhanced hydrophilicity, permeability and fouling resistance properties of PVDF-co-HFP membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123646.

Jalali-Jivan, M., Fathi-Achachlouei, B., Ahmadi-Gavlighi, H. & Jafari, S. M. (2021) Improving the extraction efficiency and stability of β-carotene from carrot by enzyme-assisted green nanoemulsification. Innovative Food Science and Emerging Technologies, 74, 102836. https://doi.org/10.1016/j.ifset.2021.102836

Jiao, Y., Kilmartin, P. A., Fan, M., & Quek, S. Y. (2018). Assessment of phenolic contributors to antioxidant activity of new kiwifruit cultivars using cyclic voltammetry combined with HPLC. Food Chemistry, 268, 77–85

Khandare, V., Walia, S., Singh, M., & Kaur, C. (2011). Black carrot (Daucus carota ssp. sativus) juice: processing effects on antioxidant composition and color. Food and bioproducts processing, 89(4), 482-486.

Li, H., Zeng, X., Shi, W., Zhang, H., Huang, S., Zhou, R. & Qin, X. (2020) Recovery and purification of potato proteins from potato starch wastewater by hollow fiber separation membrane integrated process. Innovative Food Science and Emerging Technologies, 63, 1012380. https://doi.org/10.1016/j.ifset.2020.102380

Li, Y., Zhao, W., Weyland, M., Yuan, S., Xia, Y., Liu, H., ... & Zhang, X. (2019). Thermally reduced nanoporous graphene oxide membrane for desalination. Environmental science & technology, 53(14), 8314-8323.

Lim, M. Y., Choi, Y. S., Kim, J., Kim, K., Shin, H., Kim, J. J., … Lee, J. C. (2017). Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine. Journal of Membrane Science, 521, 1–9. https://doi.org/10.1016/j.memsci.2016.08.067

Lima, M. D. A., Charalampopoulos, D., & Chatzifragkou, A. (2018). The Journal of Supercritical Fluids Optimisation and modelling of supercritical CO 2 extraction process of carotenoids from carrot peels G RA P H I C A L AB S T R A C T. The Journal of Supercritical Fluids, 133(July 2017), 94–102. https://doi.org/10.1016/j.supflu.2017.09.028

Liu, F., Wang, M., & Wang, M. (2018). Phenolic compounds and antioxidant activities of flowers, leaves and fruits of five crabapple cultivars (Malus Mill. species). Scientia Horticulturae, 235, 460–467. https://doi.org/10.1016/J.SCIENTA.2018.02.051

Ma, C., Hu, J., Sun, W., Ma, Z., Yang, W., Wang, L., … Zhang, H. (2020). Chemosphere Graphene oxide-polyethylene glycol incorporated PVDF nanocomposite ultra fi ltration membrane with enhanced hydrophilicity, permeability, and antifouling performance. Chemosphere, 253, 126649. https://doi.org/10.1016/j.chemosphere.2020.126649

Mamah, S. C., Goh, P. S., Ismail, A. F., Suzaimi, N. D., Yogarathinam, L. T., Raji, Y. O., & El-badawy, T. H. (2021). Recent development in modification of polysulfone membrane for water treatment application. Journal of Water Process Engineering, 40, 101835.

Marjani, A., Nakhjiri, A. T., Adimi, M., & Jirandehi, H. F. (2020). Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment, 1–11. https://doi.org/10.1038/s41598-020-58472-y

Mu, Y., Feng, H., Wang, S., Zhang, S., Luan, J., Zhang, M., … Wang, G. (2021). Journal of Colloid and Interface Science Combined strategy of blending and surface modification as an effective route to prepare antifouling ultrafiltration membranes. Journal of Colloid And Interface Science, 589, 1–12. https://doi.org/10.1016/j.jcis.2020.12.114

Nascimento, N. N., Vieira, A.C., Tardioli, P. W., Bergamasco, R. & Vieira, A. M. S. (2022). Valorization of soybean oil residue through advanced technology of graphene oxide modified membranes for tocopherol recovery. The Canadian Journal of Chemical Engineering, 100, 12, 3736-3749. https://doi.org/10.1002/cjce.24364

Nasrin, T. A. A., & Matin, M. A. (2017). Valorization of vegetable wastes. Food Processing By‐Products and their Utilization, 53-88.

Ng, Z. C., Lau, W. J., Matsuura, T., & Ismail, A. F. (2021). Thin film nanocomposite RO membranes: Review on fabrication techniques and impacts of nanofiller characteristics on membrane properties. Chemical Engineering Research and Design, 165, 81-105.

Nguyen, V. T., & Le, M. D. (2018). Influence of various drying conditions on phytochemical compounds and antioxidant activity of carrot peel. Beverages, 4(4), 80.

Nistor, O. V., Bolea, C. A., Andronoiu, D. G., Cotârleț, M., & Stănciuc, N. (2021). Attempts for developing novel sugar-based and sugar-free sea buckthorn marmalades. Molecules, 26(11), 3073.

Obotey Ezugbe, E., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: a review. Membranes, 10(5), 89.

Paixão, R. M., da Silva, L. H. B. R., Reck, I. M., Vieira, M. F., Bergamasco, R., & Vieira, A. M. S. (2019). Deposition of graphene nanoparticles associated with tannic acid in microfiltration membrane for removal of food colouring. Environmental Technology (United Kingdom), 0(0), 1–7. https://doi.org/10.1080/09593330.2019.1627426

Patras, A., Tiwari, B. K., Brunton, N. P., & Butler, F. (2009). Modelling the effect of different sterilisation treatments on antioxidant activity and colour of carrot slices during storage. Food Chemistry, 114(2), 484-491.

Ramos-Andrés, M., Aguilera-Torre, B., & García-Serna, J. (2021). Biorefinery of discarded carrot juice to produce carotenoids and fermentation products. Journal of Cleaner Production, 323, 129139.

Rozan, M., Darwish, Al. & Bayomy, H. (2017) Effect of Roselle Extract (Hibiscus sabdariffa) on Stability of Carotenoids, Bioactive Compounds and Antioxidant Activity of Yoghurt Fortied with Carrot Juice (Daucus carota L.). World Journal of Dairy & Food Sciences, 12 (2), 94-101.

Rufino, M. do S. M., Alves, R. E., Brito, E. S. de, Morais, S. M. de, Sampaio, C. de G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2006). Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pelo Método de Redução do Ferro (FRAP). Embrapa Agroindústria Tropical -Comunicado Técnico, 125, 3–6. http://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAT-2010/11964/1/cot-125.pdf

Rufino, M. do S. M., Alves, R. E., Brito, E. S. de, Morais, S. M. de, Sampaio, C. de G., Pérez-Jiménez, J., & Saura-Calixto, F. D. (2007). Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH Embrapa Agroindústria Tropical - Comunicado Técnico,127, 1-4.

Santos Felix, A. C., Novaes, C. G., Pires Rocha, M., Barreto, G. E., do Nascimento Jr, B. B., & Giraldez Alvarez, L. D. (2018). Mixture design and doehlert matrix for the optimization of the extraction of phenolic compounds from Spondias mombin L apple bagasse agroindustrial residues. Frontiers in Chemistry, 5, 116.

Santos-Buelga, C., González-Paramás, A. M., Oludemi, T., Ayuda-Durán, B., & González-Manzano, S. (2019). Plant phenolics as functional food ingredients. Advances in Food and Nutrition Research, 90, 183–257.

Šeregelj, Vanja, et al. "Natural bioactive compounds in carrot waste for food applications and health benefits." Studies in natural products chemistry 67 (2020): 307-344.

Sharma, M., Usmani, Z., Gupta, V. K., & Bhat, R. (2021). Critical Reviews in Biotechnology Valorization of fruits and vegetable wastes and by- products to produce natural pigments. Critical Reviews in Biotechnology, 41(4), 535–563. https://doi.org/10.1080/07388551.2021.1873240

Silva, P. G. P., Prescendo Junior, D., de Medeiros Burkert, J. F., & Santos, L. O. (2023). Carotenoid extraction from Phaffia rhodozyma biomass: downstream strategies and economic evaluation of energy. Brazilian Journal of Chemical Engineering, 40(1), 93-102.

Swain, T.; Hillis, W.E. (1959) The phenolic constituents of Prunus domestica. The quantitativeanalysis of phenolic constituents. Journal of the Science of Food and Agriculture, v.10, p.63-68.

Tang, X., Qu, Y., Deng, S. L., Tan, Y. Z., Zhang, Q., & Liu, Q. (2018). Fullerene-regulated graphene oxide nanosheet membranes with well-defined laminar nanochannels for precise molecule sieving. Journal of Materials Chemistry A, 6(45), 22590-22598.

Teixeira, N., Melo, J. C. S., Batista, L. F., Paula-Souza, J., Fronza, P., & Brandão, M. G. L. (2019). Edible fruits from Brazilian biodiversity: A review on their sensorial characteristics versus bioactivity as tools to select research. Food Research International, 119, 325–348.

Villaño, D., Fernández-Pachón, M. S., Moyá, M. L., Troncoso, A. M., & García-Parrilla, M. C. (2007). Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 71(1), 230-235.

Wang. M., Sun, F., Zeng, H., Su, X., Zhou, X., Liu, H. & Xing, D. (2022). Modified Polyethersulfone Ultrafiltration Membrane for Enhanced Antifouling Capacity and Dye Catalytic Degradation Efficiency. Separations 2022, 9, 92. https://doi.org/10.3390/separations9040092

Xie, W., Li, T., Tiraferri, A., Drioli, E., Figoli, A., & Crittenden, J. C. (2021). Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles. https://doi.org/10.1021/acssuschemeng.0c07119

Yamaguchi, N. U., Bergamasco, R., & Hamoudi, S. (2016). Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water. Chemical Engineering Journal, 295, 391-402.

Yang, Q., Su, Y., Chi, C., Cherian, C. T., Huang, K., Kravets, V. G., ... & Nair, R. R. (2017). Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nature materials, 16(12), 1198-1202.

Yuliwait, E., Ismail, A. F., Matsuura, T., Kassim, M. A. & Abdullah, M. S. (2011) Characterization of surface-modified porous PVDF hollow fibers for refinery wastewater treatment using microscopic observation. Desalination, 283, 206-213. doi:10.1016/j.desal.2011.02.037

Zhao, Y., Gu, Y., Liu, B., Yan, Y., Shan, C., Guo, J., Zhang, S., Vecitis, C. D. & Gao, G. (2022). Pulsed hydraulic-pressure-responsive self-cleaning membrane. Nature, 608,69-73. https://doi.org/10.1038/s41586-022-04942-4

Zhu, T., Jiang, C., Wu, J., Wang, M., Zhu, C., Zhao, N., & Xu, J. (2021). Colloids and Surfaces A : Physicochemical and Engineering Aspects Eco-friendly and one-step modification of poly (vinylidene fluoride) membrane with underwater superoleophobicity for effective emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610(November 2020), 125939. https://doi.org/10.1016/j.colsurfa.2020.125939

Downloads

Published

2023-12-26

How to Cite

do Nascimento, N. N., Beltran, L. B., Negrão, F. N., Silva, J. V. de A., Bergamasco, R., & Vieira, A. M. S. (2023). Innovative strategy to improve β-carotene recovery from carrot peel extracts: ultrafiltration with layer-by-layer graphene oxide membrane coating. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(12), 27115–27137. https://doi.org/10.55905/oelv21n12-196

Issue

Section

Articles