Ecological dynamic of fish farming ponds managed during the growth of matrinxã (Brycon amazonicus)

Authors

  • Marcos Fernandes Silva
  • José Francisco Souza da Silva
  • Edmilson Domingues Nogueira Júnior
  • Amanda de Oliveira Sampaio Fernandes
  • Jocilene Braga dos Santos
  • Lisandro Juno Soares Vieira
  • José Genivaldo do Vale Moreira
  • Tiago Lucena da Silva
  • Rogério Oliveira Souza
  • Erlei Cassiano Keppeler

DOI:

https://doi.org/10.55905/oelv21n12-068

Keywords:

dynamic, microzooplankton, fish, environment

Abstract

Habitat for organisms in ecosystems include attributes to the ecological significance and resulting from the interactions between its physical, chemical and biological components. In fishponds, one of the important features is the community of the microzooplankton that é key component of marine food webs and food chain in freshwater. An experiment was carried out in an area for fish farming, located in Assis Brasil Village, municipality of Cruzeiro do Sul, State of Acre, aimed to observe the dynamics of fish farming tanks, and the composition and microzooplankton abundance, submitted to two treatments, commercial feed (ad libitum) and tabulated feed. The results showed that environments severely eutrophicated are characterized by high values of phosphorus and nitrogen, and dominance of species of Rotifera, throughout the study. On this basis, it was concluded that researches of this nature contributes for determining the water quality, particularly using potential bioindicator species, that grow excessively in these environments. 

References

APHA. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, Water Environment Federation. Washington, DC. 22nd Ed., 2012.

ASTUDILLO-GARCIA C. et al. Microbial assemblages and bioindicators as proxies for ecosystem health status: potential and limitations. Applied Microbiology and Biotechnology, v. 103, n. 16, p. 6407-6421., 2019.

AYRES, M. et al. BIOESTAT – Aplicações estatísticas nas áreas das ciências bio-médicas. Ong Mamiraua. Belém, PA, 2007.

CALBET, A. The trophic roles of microzooplankton in marine systems. ICES

Journal of Marine Science. v. 65, n. 3, p. 325–331., 2008.

https://doi.org/10.1093/icesjms/fsn013

COLWELL, R.K.; MAO, C.X.; CHANG, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology, v. 85, n. 10, p. 2717-2727. 2004.

DANTAS, Ê. W. et al. Efeito das variáveis abióticas e do fitoplâncton sobre a comunidade zooplanctônica em um reservatório do Nordeste brasileiro. Iheringia. Série Zoologia, v. 99, n. 2., p. 132-141, 2009. https://doi.org/10.1590/S0073-47212009000200003.

ELER et al. Ocorrência de Rotifera e sua relação com o estado trófico da água em pesque-pague na bacia do rio Mogi-Guaçu-SP. Boletim Técnico do CEPTA, v. 16, p. 41-56, 2003.

HAIR, J. F. et al. Análise multivariada de dados. In: SANTANNA, A.S.; NETO, A.C. (Trad.). Porto Alegre: Bookman, 2005.

HAMMER, Ø., D. A. T.; HARPER, D.A.T.; RYAN, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. v. 4, n. 1, 9pp, 2001.

KEPPELER, E.C. Correlações limnológicas em viveiros de camarão da Amazônia .Macrobrachium amazonicum, Biotemas, v. 21, n. 4, p. p. 66-72, 2009.

KOUR. S. et al. Zooplankton as Bioindicators of Trophic Status of a Lentic Water Source, Jammu (J&K) with Remarks on First Reports. Proceedings of the National Academy of Sciences. v. 92, p. 393–404, 2022. https://doi.org/10.1007/s40011-022-01349-z.

LUDWIG, J.A.; REYNOLDS, J.F. Statistical ecology: a primer on methods and computing . New York: John Wiley and Sons, 1988.

MAGURRAN, A. E. Measuring biological diversity. Oxford, Blackwell Science. 256p., 2004.

MAZUMDER, D. et al. Inputs of anthropogenic nitrogen influence isotopic composition and trophic structure in SE Australian estuaries. Marine pollution bulletin, v. 100, n. 1, p. 217-223, 2015. DOI: 10.1016/j.marpolbul.2015.08.047

NEGREIROS, N. F. et al. Composition, diversity and short-term temporal fluctuations of zooplankton communities in fish culture ponds (Pindamonhangaba), SP. Brazilian Journal of Biology, v. 69, p. 785-794, 2009.

PARMAR, T. K.; RAWTANI, D.; AGRAWAI, Y.K. Bioindicators: the natural indicator of environmental pollution. Frontiers in Life Science, v. 9, n. 2, p. 110-118, 2016. https://doi.org/10.1080/21553769.2016.1162753.

SANTOS-FILHO, D. F. Tecnologia de Tratamento de Água. Método Colorimétrico, Azul de Molibdênio, p. 206. 1976.

SILVA, E. B. da; KEPPELER, E. C.; LEITE, H. M. F. Spatial distribution of the rotifers community in fishponds in Cruzeiro do Sul - Acre State. Ambiência, v. 13, n. 2, p. 439–451, 2017.

SLÁDECEK, V. Rotifers as indicators of water quality. Hydrobiologia n. 100, p. 169–201, 1983. https://doi.org/10.1007/BF00027429.

TÓTH, F. et al. The effect of feed composition on the structure of zooplankton communities in fishponds. Water, v. 12, n. 5, p. 1338, 2020.

https://doi.org/10.3390/w12051338.

TÓTH, F. et al. Seasonal differences in taxonomic diversity of rotifer communities in a Hungarian lowland oxbow lake exposed to aquaculture effluent. Water, v. 12, n. 5, p. 1300, 2020. https://doi.org/10.3390/w12051300.

Downloads

Published

2023-12-11

How to Cite

Silva, M. F., da Silva, J. F. S., Nogueira Júnior, E. D., Fernandes, A. de O. S., dos Santos, J. B., Vieira, L. J. S., Moreira, J. G. do V., da Silva, T. L., Souza, R. O., & Keppeler, E. C. (2023). Ecological dynamic of fish farming ponds managed during the growth of matrinxã (Brycon amazonicus). OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(12), 24678–24694. https://doi.org/10.55905/oelv21n12-068

Issue

Section

Articles

Most read articles by the same author(s)