The Matupiri amazon fish Tetragonopterus chalceus as a bioindicator of pollution

Authors

  • Tainára Cunha Gemaque
  • Sergio Rodrigues da Silva
  • Daniel Pereira da Costa

DOI:

https://doi.org/10.55905/oelv21n12-004

Keywords:

aquaculture and fisheries, contamination, mining, blood parameters, native fish

Abstract

Oxidative stress is a biological condition in which imbalance occurs between the production of reactive oxygen species. The present study aimed to evaluate the hemoglobin (Hb), methaemoglobin (mHb) and Glutathione (GSH) contents as indicators of oxidative stress in Matupiri Tetragonopterus chalceus. Fish were collected in the port area of ​​Santana, AP and others in extensive aquaculture area in Amapá, AP, Brazil. Blood samples were collected, the samples were diluted in phosphate buffer and analyzed in a spectrophotometer. When evaluating Hb, mHb and GSH, significant increases of these components were observed in fish blood (P <0.05). This suggests that the analyzed port site presents an environmental imbalance due to the exposure of the organisms to high concentrations of ores, provoking possible oxidative stress which may compromise the site for fishing and aquaculture purposes.

References

AGGERGAARD, S. & JENSEN F. B. Cardiovascular changes and physiological response during nitrite exposure in rainbow trout. Journal of Fish Biology, V. 59, p.13.- 27, 2001. https://doi.org/10.1111/j.1095-8649.2001.tb02335.x

BENESCH, R. E.; BENESCH. R.; YUNG, S. Equations for the spectrophotometric analysis of hemoglobin mixtures. Analytical Biochemistry, V.55, p.215-218, 1973. https://doi.org/10.1016/0003-2697(73)90309-6

BETTENDORFF L. Reduced Nucleotides, Thiols and O2 in Cellular Redox Balance: A Biochemist’s View. Antioxidants, V.11, 1877, 2022. https://doi.org/10.3390/antiox11101877

BEUTLER, E.; DURON, O.; KELLY, B. M. Improved method for the determination of glutatione. Journal of Laborotorial and Clinical Medicine, v.61, p.882-890, 1963.

CASARA, M. 2003. Predatory mining in the brasilian Amazon: Five decades of social and environmental irresponbility im Amapá State. Social Observatory.

CLARK, T. D.; SANDBLOM, E.; COX, G. K.; HINCH, S. G.; FARRELL, A. P. Circulatory limits to oxygen supply during an acute temperature increase in the Chinook salmon (Oncorhynchus tshawytscha). American Journal of Physiology A, v.295, p.1631– 1639, 2008. https://doi.org/10.1152/ajpregu.90461.2008

CYRIAC, P. J.; ANTONY, A.; NAMBISAN, P. N. K. Hemoglobin and Hematocrit values in the fish Orechromis mossabicus (Peters) after short term exposure to Cooper and Mercury. Bulletin of Environmental Contamination and Toxicology, v.43, p.315-320, 1989. https://doi.org/10.1007/BF01701764

DONALDSON, E. M. 1981. The pitutary-interrenal axis as an indicator of stress in fish. In: Pickering A.D., editor. Stress and fish. New York: Academic Press.

GEMAQUE, T. C.; COSTA, D. P.; PEREIRA, L. V.; MIRANDA-FILHO, K. C. Evaluation of iron toxicity in the tropical fish Leporinus Friderici. Biomedical Journal of Science Technology & Research, V.18, p.13436-13441, 2019. https://doi.org/10.26717/BJSTR.2019.18.003127

JUAN, C. A.; PÉREZ DE LA LASTRA, J. M.; PLOU, F. J.; PÉREZ-LEBEÑA, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Science, v.22, p.4642, 2021. https://doi.org/10.3390/ijms22094642

LACKNER, R. “Oxidative stress” in fish by environmental pollutants. In: Fish ecotoxicology. Birkhäuser Basel, p. 203-224, 1998.

SAMPAIO, F. G.; BOIJINK, C. L.; SANTOS, L. R. B.; OBA, E. T.; KALININ, A. L.; LUIZ, A. J. B.; RANTIN, F. T. Antioxidant defenses and biochemical chages in the neotropical fish pacu, Piaractus mesopotamicus: Responses to single and combined copper and hypercarbia exposure. Compendium of Biochemistry and Physiology C, v.156, p.156-178, 2012. https://doi.org/10.1016/j.cbpc.2012.07.002

SHAHJAHAN, MD.; JAKIUL ISLAM, MD.; TAHMEED HOSSAIN, MD.; MISHU, M. A.; HASAN, J.; BROWN, C. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish, Science of the Total Environment, v.843, 156910, 2022. https://doi.org/10.1016/j.scitotenv.2022.156910.

SANTOS, E. C. O.; JESUS, I. M.; BRABO, E. S.; FAYAL, K. F.; SÁ-FILHO, L. L. C.; SILVA, A. P. A.; CÂMARA, V. M. Exposição ao mercúrio e ao arsênio em estados da Amazônia: Síntese dos estudos do instituto Evandro Chagas / FUNASA. Revista Brasileira de Epidemiologia, v.6 p.171-185. 2003. https://doi.org/10.1590/S1415-790X2003000200010

SATO, Y.; SAMPAIO. G. V.; FENERICH-VERANI, N.; VERANI, J. R. Biologia reprodutiva e reprodução induzida de duas espécies de Characidae (Osteichthyes, Characiformes) da bacia do São Francisco, Minas Gerais, Brasil. Revista Brasileira de Zoologia, V.23, p.267-273, 2006. https://doi.org/10.1590/S0101-81752006000100021

Downloads

Published

2023-12-04

How to Cite

Gemaque, T. C., da Silva, S. R., & da Costa, D. P. (2023). The Matupiri amazon fish Tetragonopterus chalceus as a bioindicator of pollution. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(12), 23518–23524. https://doi.org/10.55905/oelv21n12-004

Issue

Section

Articles

Most read articles by the same author(s)