Technological advances in irrigation from the perspective of articicial intelligence

Authors

  • Cristiano Galafassi
  • Charles Quevedo Carpes
  • Fabiane Flores Penteado Galafassi
  • Daniel Ciro de Souza
  • Alexandre Russini
  • Catize Brandelero
  • Lorenzo Bervian Machado
  • Pedro Olea Hamann

DOI:

https://doi.org/10.55905/oelv21n10-207

Keywords:

irrigation, artificial intelligence, systems, exploratory, research, technology

Abstract

The purpose of this study was to conduct an analysis of technological advancements and current irrigation situation in agriculture from the perspective of artificial intelligence. The Scopus platform's database was initially used to find scientific articles published in recent decades that highlight the use of artificial intelligence techniques regarding irrigation in agriculture. From the 807 publications returned by the search process a sample of 19 publications that underwent systematic analysis were chosen statistically. The areas of Artificial Intelligence were classified: Expert Systems (30.70%), Optimization (30.70%), Machine Learning (10.30%), Evolutionary Computing (10.30%), Robotics and Remote Sensing (10.20%), with Automation, IoT and Natural Language Processing with 2.6%, respectively. Considering the conditions under which the study was conducted the analysis reveals that in the last 10 years (2012 to 2022) account, for about 70% of categories assigned to research that is conducted inside AI areas and aims to create data that can be utilized to support practical decisions about the use of water.

References

ALE, S.; OMANI, N.; HIMANSHU, S. K.; BORDOVSKY, J. P.; THORP, K. R.; BARNES, E. M. Determining optimum irrigation termination periods for cotton production in the Texas high plains. Transaction of the ASABE, v. 63, n. 1, p. 105-115, 2020. DOI: https://doi.org/10.1109/PMA.2012.6524807.

ALLANI, M.; JABLOUN, M.; SAHLI, A.; HENNINGS, V.; MASSMANN J.; MÜLLER, H. Enhancing on Farm and Regional Irrigation Management Using MABIA-Region Tool. In: IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, v.1, n.1, p. 18–21, 2012. DOI: https://doi.org/10.1109/PMA.2012.6524807

ARHONDITSIS, G.B.; NEUMANN, A.; SHIMODA, Y.; KIM, D. K.; DONG, F.; ONANDIA, G.; CHENG, V. Castles built on sand or predictive limnology in action? Part A: Evaluation of an integrated modelling framework to guide adaptive management implementation in Lake Erie. Ecological Informatics, v. 53, p. 1-19, 2019. DOI: https://doi.org/10.1016/j.ecoinf.2019.05.014

BACHOUR, R.; WALKER, W. R.; TICLAVILCA, A. M.; MCKEE, M.; MASLOVA, I. Estimation of spatially distributed evapotranspiration using remote sensing and a relevance vector machine. Journal of Irrigation and Drainage Engeneering, v. 140, n. 8, 2014. DOI: 10.1061/(ASCE)IR.1943-4774.0000754.

BAI, D.; LIANG, G. Optimal planning model of the regional water saving irrigation and its application, In: International symposium on geomatics for integrated water resource management, p. 1– 4, 2012. DOI: https://doi.org/10.1109/GIWRM.2012.6349622.

BASTOS, G. S. Otimização da Operação de Centrais Hidrelétricas pela Distribuição Inteligente de Carga entre Máquinas. 2004. Dissertação (Mestrado em Engenharia Elétrica), Universidade Federal de Itajubá, Itajubá, 2004.

DA SILVA, P. P. G.; DE ANDRADE, C. L. T.; BORGES, J. C. F.; MAGALHÃES, B. G.; DE MELO, B. F.; GARCIA, A. G. Y. Response of tropical maize to supplemental irrigation strategies. 2016 In: AMERICAN SOCIETY OF AGRICULTURAL AND BIOLOGICAL ENGINEERS ANNUAL INTERNATIONAL MEETING, ASABE 2016. Anais, 2016 ASABE Annual International Meeting, Orlando, 2016. DOI: 10.13031/aim.20162460366.

DE PAULA, T. Técnicas de amostragem: Orientações para que os resultados informem de maneira clara e precisa os objetivos da pesquisa. Centro de Apoio à Pesquisa no Complexo de Saúde. Universidade do Estado do Rio de Janeiro, 2019. Disponível em: http://www.capcs.uerj.br/tecnicas-de-amostragem/. Acesso em: 03 set. 2022.

DOMÍNGUEZ, A.; MARTÍNEZ, R. S.; DE JUAN, J. A.; MARTÍNEZ-ROMERO, A. Simulation of maize crop behavior under déficit irrigation using MOPECO model in a semi-arid environment. Agricultural, Water Management, v. 107, p. 42-53, 2012. DOI: 10.1016/j.agwat.2012.01.006.

ENESCU, F. G.; BION, N.; STIRBU, C. Smart Energy Grids used in irrigation systems using the blockchain applications. In: Proceedings of the 11th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2019, Pitesti, 2019. DOI: 10.1109/ECAI46879.2019.9042044.

FAWZI, N. A.; JALAL, A. S. A. Design and Implementation of Smart Irrigation System Using Wireless Sensor Network Based on Internet of Things. International Journal of Scientific & Engineering Research, v. 8, n. 4, p. 109-113, 2017.

HAN, B. Water Saving Control of Turfgrass Irrigation Robot Using Genetic Simulated Annealing Algorithm. Mobile Information Systems, v. 2021, n.1, p. 1-7. 2021. DOI: 10.1155/2021/1082304.

HENDRAWAN, Y.; MURASE, H. Determining an ANN pre-treatment algorithm to predict water content of moss using RGB intensities. Engeneering in Agriculture, Environment and Food, v. 4, n.4, p. 95-105, 2011. DOI: 10.1016/S1881-8366(11)80008-X.

HERSHAUER J.; KARIM A.; OWENS H.; PHILIPPAKIS A. A field observation study of an expert system prototype development. Information and Management, v. 17, n. 2, p. 107-116, 1989. DOI: https://doi.org/10.1016/0378-7206(89)90012-8

HOLLAND, J. H. Genetic Algorithms and Adaptation. In: Nato Conference Series, v. 16, 1984. Springer, Boston. DOI: https://doi.org/10.1007/978-1-4684-8941-5_21

HONÓRIO, L. F. Inteligência artificial: conceitos e aplicações. Revista Olhar Científico, v. 1, n.2, p.234-246, 2010.

HYATT, K. D.; ALEXANDER, C. A. D.; STOCKWELL, M. M. A decision support system for improving “fish friendly” flow compliance in the regulated Okanagan Lake and River System of British Columbia. Canadian Water Resources Journal, v. 40, n. 1, p. 87-110, 2015. DOI: 10.1080/07011784.2014.985510.

JIMÉNEZ, A. F..; CÁRDENAS, P. E.; JIMÉNEZ, F. Intelligent IoT-multiagent precision irrigation approach for improving water use efficiency in irrigation systems at farm and district scales. Computers and Electronics in Agriculture, v. 192, p. 1-19, 2022. DOI: https://doi.org/10.1016/j.compag.2021.106635.

KATIYAR, S.; FARHANA, A. Smart Agriculture: The Future of Agriculture using AI and IoT. Journal of Computer ScienceOpen Access, v. 17, n. 10, p. 984-999, 2021. DOI: 10.3844/jcssp.2021.984.999.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, n. 7553, p. 436-444, 2015. DOI:10.1038/nature14539.

LEVINE, D. M.; BERENSON, M. L.; STEPHAN, D. Estatística: Teoria e Aplicações usando Microsoft Excel em Português. Rio de Janeiro: LTC, 2000.

LIU, J.; TAO, J.P. Research and application of agricultural greenhouse intelligence platform based on IoT (Internet of Things) and cloud computing. International Journal of Simulation--Systems, Science & Technology, v. 17, n. 5, p. 1-5, 2016.

MARCU, I.M.; SUCIU, G., BALACEANU, C.M.; BANARU, A. IoT based System for Smart Agriculture. In: International Conference, 11th Edition Electronics, Computers and Artificial Intelligence, 2019, p. 1-4, Pitesti, Romania, 2019. DOI: https://doi.org/10.1109/ECAI46879.2019.9041952

MARTÍNEZ-VALDERRAMA, J.; IBÁÑEZ, J.; ALCALÁ, F. J. Aquacoasta: Simulation Tool to Explore Coastal Groundwater and Irrigation Farming Interactions. Scientific Programming, v. 2020, n.1, p.1-20, 2020. DOI: 10.1155/2020/9092829.

MATTAR, M. A.; ALAMOUD, A. I. Gene expression programming approach for modeling the hydraulic performance of labyrinth-channel emitters. Computers and Electronics in Agriculture, v. 142, p. 450-460, 2017. DOI: 10.1016/j.compag.2017.09.029.

MENDES, R. D. Inteligência artificial: sistemas especialistas no gerenciamento da informação. Ciência de Informação, v. 26, n.1, p. 39-45, 1997. DOI: https://doi.org/10.1590/S0100-19651997000100006.

MENDES, W.R.; ARAÚJO, F. M. U.; DUTTA, R.; HEEREN, D. M. Fuzzy control system for variable rate irrigation using remote sensing. Expert Systems With Applications, v. 124, n..1 p. 13–2, 2019. DOI: https://doi.org/10.1016/j.eswa.2019.01.043

MENEZES, P. L. D.; DE AZEVEDO, C. A.; EYNG, E.; DANTAS NETO, J.; DE LIMA, V. L. Artificial neural network model for simulation of water distribution in sprinkle irrigation. Revista Brasileira de Engenharia Agrícola e Ambiental, Vol. 19, n. 9, p. 817-822, 2015.

MUANGPRATHUB, J.; BOONNAM, N.; KAJORNKASIRAT, S.; LEKBANGPONG, N.; WANICHSOMBAT, A.; NILLAOR, P. IoT and agriculture data analysis for the smart farm, Computers and electronics in agriculture, v. 156, n.1, p. 467–474, 2019. DOI: https://doi.org/10.1016/j.compag.2018.12.011

NANGIA, V.; TURRAL, H.; MODEN, D. Increasing water productivity improved N fertilizer management. Irrigation dan Drainage Systems, v. 22, n. 3-4, p. 193-207, 2008. DOI: 10.1007/s10795-008-9051-9.

NAVARRO-HELLÍN, H.; MARTINEZ-DEL-RINCON, J.; DOMINGO-MIGUEL, R.; SOTO-VALLÉS, F.; TORRES-SÁNCHEZ, R. A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, v. 124, n.1, p. 121–131, 2016. DOI: https://doi.org/10.1016/j.compag.2016.04.003

NECO, D. C. Inteligência Artificial Em Otimização De Centrais Hidrelétricas. Revista Científica Multidisciplinar Núcleo do Conhecimento, v. 15, n.3. p. 70-81, 2021.

PIOVESAN, A.; TEMPORINI, E. R. Pesquisa exploratória: procedimento metodológico para o estudo de fatores humanos no campo da saúde pública. Revista Saúde Pública, v.29, n.4, p.318-325, 1995.

RAJASEKARAM, V.; NANDALAL, K. D. W. Decision support system for reservioir water management resolution. Journal of Water Resources Planning and Management, v. 131, n.2, p. 410-419, 2005. DOI: 10.1061/(ASCE)0733-9496(2005)131:6(410).

RINALDI, M.; HE, Z. Decision Support Systems to Manage Irrigation in Agriculture. Advances in Agronomy, Vol. 123, c.6, p. 229-279, 2014. DOI: https://doi.org/10.1016/B978-0-12-420225-2.00006-6

RODRIGUEZ-ORTEGA, W. M.; MARTINEZ, V.; RIVERO, R. M.; CAMARA-ZAPATA, J. M.; MESTRE, T., GARCIA-SANCHEZ, F. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agricultural Water Management, v. 183, n.1, p. 158–168, 2017. DOI: https://doi.org/10.1016/j.agwat.2016.07.014

RUSSEL, S.; NORVIG, P. Inteligência artificial. Tradução Regina Célia Simille. Rio de Janeiro: Elsevier, 2013. 953 p. Bibliografia: p.13-31.

SHAHVERDI, K.; ALAMIYAN-HARANDI, F.; MAESTRE, J. M. Double Q-PI architecture for smart model-free control of canals. Computers and Electronics in Agriculture, v. 197, n. 1, p.1-16 2022. DOI: 10.1016/j.compag.2022.106940.

SU, M.; WEN, T. Spatial decision support systema for irrigation demand planning. In: WORLD WATER AND ENVIRONMENTAL RESOURCES CONGRESS, 2001. Orlando. Anais eletrônicos World Water and Environmental Resources Congress, 2001. Orlando: 2001. DOI: http://dx.doi.org/10.1061/40569(2001)359

SUDARSHAN, K. G.; HEGDE, R. R.; SUDARSHAN, K.; & PATIL, S. Smart agriculture monitoring and protection system using IoT. Perspect Commun Embed Syst Signal Process (PiCES), v. 2, n. 12, p. 308–310, 2019.

TORGA, B. L. M. Modelagem, Simulação e Otimização em Sistemas Puxados de Manufatura. 2007. Dissertação (Mestrado em Engenharia de Produção). – Programa de Pós-graduação em Engenharia de Produção, Universidade Federal de Itajubá. Itajubá, 2007.

UDIAS, A.; PASTORI, M.; DONDEYNAZ, C.; CARMONA MORENO, C.; ALI, A.; CATTANEO, L.; CANO, J. A decision support tool to enhance agricultural growth in the Mékrou river basin (West Africa). Computers and Eletronics in Agriculture, v. 154, n.1, p. 467-481, 2018. DOI: 10.1016/j.compag.2018.09.037.

ÜNAL, Z. Smart farming becomes even smarter with deep learning: a biographical analysis, Egyptian Journal of Remote Sensing and Space Science, Vol. 24, n. 3, p. 971 - 981, 2021.

VARGHESE, R.; SHARMA, S. Affordable smart farming using IoT and machine learning. In: SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS). 2018, Madurai. Anais Second International Conference on Intelligent Computing and Control Systems. Madurai: 2018. P.645–650. DOI: https://doi.org/10.1109/ICCONS.2018.8663044

WOLFERT, S.; GE, L.; VERDOUW, C.; BOGAARDT, M. J. Big Data in Smart Farming: a review. Agricultural Systems, v. 153, n.1, p. 69–80, 2017. DOI: https://doi.org/10.1016/j.agsy.2017.01.023

WORQLUL, A. W.; DILE, Y. T.; SCHMITTER, P.; JEONG, J.; MEKI, M. N.; GERIK, T. J.; SRINIVASAN, R.; LEFORE, N.; CLARKE, N. Water resource assessment, gaps, and constraints of vegetable production in Robit and Dangishta watersheds, Upper Blue Nile Basin, Ethiopia. Agricultural Water Management, v. 225, n.1, p. 1-10, 2019. DOI: 10.1016/j.agwat.2019.105767.

ZADEH, L. A. Fuzzy logic and approximate reasoning. Synthese, v. 30, n.1, p. 407-428, 1975.

ZARO, M. Desperdício de alimentos: velhos hábitos, novos desafios; Caxias do Sul, RS: Educs, 2018. 4

Downloads

Published

2023-10-24

How to Cite

Galafassi, C., Carpes, C. Q., Galafassi, F. F. P., de Souza, D. C., Russini, A., Brandelero, C., Machado, L. B., & Hamann, P. O. (2023). Technological advances in irrigation from the perspective of articicial intelligence. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(10), 18353–18375. https://doi.org/10.55905/oelv21n10-207

Issue

Section

Articles

Most read articles by the same author(s)