Remodeladores da cromatina: alterações moleculares e farmacogenômica
DOI:
https://doi.org/10.55905/oelv21n9-139Keywords:
alterações moleculares, câncer, remodeladores da cromatinaAbstract
A associação do ácido desoxirribonucleico (DNA) compactado com proteínas forma um complexo denominado de cromatina, que condensa o DNA dentro do núcleo celular e controla diversos aspectos do seu funcionamento. Alterações nos genes de remodelamento da cromatina podem levar ao surgimento do câncer e afetar diretamente os mecanismos de resistência e progressão do paciente. Neste sentido, foram identificadas alterações moleculares em genes envolvidos no remodelamento da cromatina e suas potenciais implicações na resposta à fármacos, bem como a frequência que estes estão alterados em amostras de canceres. As análises foram realizadas “in silico”, utilizando linguagem de programação R para explorar os dados do painel de linhagens celulares NCI-60 (“National Cancer Institute Panel of Cancer Cells”). Após analisar os 90 genes remodeladores da cromatina percebeu-se que a posição cromossômica, família gênica e função molecular desempenham um papel relevante na determinação da expressão destes genes. Além disso, a família SWI/SNF apresentou alta incidência de alterações moleculares no painel NCI-60, sugerindo que a inativação de membros desta família pode desempenhar um papel importante no desenvolvimento neoplásico. Por sua vez, a expressão gênica, bem como as alterações moleculares mostraram-se associadas a atividade de vários fármacos sugerindo novas potenciais aplicações clínicas na terapia personalizada.
References
ABAAN, O. D. et al. The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer research, v. 73, n. 14, p. 4372-4382, 2013.
ABAZA, Y. et al. Hyper‐CVAD plus nelarabine in newly diagnosed adult T‐cell acute lymphoblastic leukemia and T‐lymphoblastic lymphoma. American journal of hematology, v. 93, n. 1, p. 91-99, 2018.
AI, J. et al. Blockage of SSRP1/Ets-1/Pim-3 signalling enhances chemosensitivity of nasopharyngeal carcinoma to docetaxel in vitro. Biomedicine & Pharmacotherapy, v. 83, p. 1022-1031, 2016.
ARAUJO, N. D. et al. A era da bioinformática: seu potencial e suas implicações para as ciências da saúde. Estudos de biologia, v. 30, n. 70-72, p. 143-148, 2008.
BAYAT, A. Science, medicine, and the future: Bioinformatics. BMJ: British Medical Journal, v. 324, n. 7344, p. 1018, 2002.
BRASIL. Ministério da Saúde. Instituto Nacional do Câncer. Estimativa 2018: incidência de câncer no Brasil. Rio de Janeiro: INCA, 2017. Disponível em: <http://www.inca.gov.br/estimativa/2018/estimativa-2018.pdf>. Acesso em: 22 Mar. 2018.
BUIE, Larry W.; EPSTEIN, Stacy S.; LINDLEY, Celeste M. Nelarabine: a novel purine antimetabolite antineoplastic agent. Clinical therapeutics, v. 29, n. 9, p. 1887-1899, 2007.
CHAN, John K. et al. A phase II evaluation of brivanib in the treatment of persistent or recurrent carcinoma of the cervix: An NRG Oncology/Gynecologic Oncology Group study. Gynecologic oncology, v. 146, n. 3, p. 554-559, 2017.
CHEN, J. J., CHEN, C. H. Microarray gene expression. Encyclopedia of Biopharmaceuti-cal Statistics, 2nd Edition, Marcel Dekker, Inc, p. 599-613, 2003.
CLAPIER, C. R.; CAIRNS, B. R. The biology of chromatin remodeling complex-es. Annual review of biochemistry, v. 78, p. 273-304, 2009.
CUVERTINO, Sara et al. ACTB Loss-of-Function Mutations Result in a Pleiotropic De-velopmental Disorder. The American Journal of Human Genetics, v. 101, n. 6, p. 1021-1033, 2017.
GOU, W. et al. Immunohistochemical profile of ING3 protein in normal and cancerous tissues. Oncology letters, v. 13, n. 3, p. 1631-1636, 2017.
GURARD-LEVIN, Z. A. et al. Chromatin Regulators as a guide for cancer treatment choice. Molecular cancer therapeutics, v. 15, n. 7, p. 1768-1777, 2016.
HENRIQUE, R. ASF1A in Gastric and Colorectal Cancer: On the Hinge Between Genetics and Epigenetics?. EBioMedicine, v. 21, p. 45-46, 2017.
JOHNSTON, James B. Mechanism of action of pentostatin and cladribine in hairy cell leukemia. Leukemia & lymphoma, v. 52, n. sup2, p. 43-45, 2011.
KADOCH, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nature genetics, v. 45, n. 6, p. 592, 2013.
KESSEL, D. et al. The role of autophagy in the death of L1210 leukemia cells initiated by the new antitumor agents, XK469 and SH80. Molecular cancer therapeutics, v. 6, n. 1, p. 370-379, 2007.
KHALED, W. T. et al. BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nature communications, v. 6, p. 5987, 2015.
KLOCHENDLER-YEIVIN, A. et al. SWI/SNF chromatin remodeling and cancer. Current opinion in genetics & development, v. 12, n. 1, p. 73-79, 2002.
KORNBERG, R. D. Structure of chromatin. Annual review of biochemistry, v. 46, n. 1, p. 931-954, 1977.
LÄNGST, G; MANELYTE, L. Chromatin remodelers: from function to dysfunc-tion. Genes, v. 6, n. 2, p. 299-324, 2015.
LI, Da-Qiang; KUMAR, Rakesh. Unravelling the complexity and functions of MTA coregulators in human cancer. In: Advances in cancer research. Academic Press, 2015. p. 1-47.
LIANG, X. et al. Histone chaperone ASF1A predicts poor outcomes for patients with gastrointestinal cancer and drives cancer progression by stimulating transcription of β-catenin target genes. EBioMedicine, v. 21, p. 104-116, 2017.
LU, C; ALLIS, C. D. SWI/SNF complex in cancer. Nature Genetics. 49, 178–179, 2017.
MATHIAS, Trevor J. et al. The FLT3 and PDGFR inhibitor crenolanib is a substrate of the multidrug resistance protein ABCB1 but does not inhibit transport function at pharmaco-logically relevant concentrations. Investigational new drugs, v. 33, n. 2, p. 300-309, 2015.
MCCALL, M. N. et al. The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes. Nucleic Acids Res, v. 39, n. Database issue, p. D1011-5, Jan 2011.
MCMAHON, Steven B. et al. The novel ATM-related protein TRRAP is an essential co-factor for the c-Myc and E2F oncoproteins. Cell, v. 94, n. 3, p. 363-374, 1998.
MOROZOVA, O. et al. Applications of new sequencing technologies for transcriptome analysis. Annual review of genomics and human genetics, v. 10, p. 135-151, 2009.
NABBI, A. et al. ING3 promotes prostate cancer growth by activating the androgen receptor. BMC medicine, v. 15, n. 1, p. 103, 2017.
OSLEY, M. A. et al. ATP-dependent chromatin remodeling factors and DNA damage re-pair. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 618, n. 1, p. 65-80, 2007.
PHILLIPS, T.; SHAW, K. Chromatin remodeling in eukaryotes. Nature Education, v. 1, n. 1, p. 209, 2008.
PUNWANI, Divya et al. Multisystem anomalies in severe combined immunodeficiency with mutant BCL11B. New England Journal of Medicine, v. 375, n. 22, p. 2165-2176, 2016.
RANG, H.P. Farmacologia. 3.ed. Rio de Janeiro: Guanabara Koogan, 1997. 692p.
REINHOLD, W. C. et al. Using CellMiner 1.6 for systems pharmacology and genomic analysis of the NCI-60. Clinical Cancer Research, p. clincanres. 0335.2015, 2015.
SARKAR, S. et al. The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair. The Journal of cell biology, v. 191, n. 6, p. 1061-1068, 2010.
SAVAS, S.; SKARDASI, G. The SWI/SNF complex subunit genes: Their functions, variations, and links to risk and survival outcomes in human cancers. Critical reviews in oncology/hematology, v. 123, p. 114-131, 2018.
SINHA, K. K. et al. Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler. Science, v. 355, n. 6322, p. eaaa3761, 2017.
SINHA, Sayantani et al. SWI/SNF subunit expression heterogeneity in human aplastic anemia stem/progenitors. Experimental hematology, 2018.
SOUSA, F. G. Efeito citotóxico do Olaparib em células de câncer colorretal: Estudo da influência de defeitos genéticos. 2012.172 f. Tese (Doutorado em Ciências) - Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2012.
SOUSA, F. G. et al. Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity. DNA repair, v. 28, p. 107-115, 2015.
STANKIEWICZ, Paweł et al. Haploinsufficiency of the chromatin remodeler BPTF causes syndromic developmental and speech delay, postnatal microcephaly, and dysmorphic features. The American Journal of Human Genetics, v. 101, n. 4, p. 503-515, 2017.
STEARS, R. L. et al. Trends in microarray analysis. Nature medicine, v. 9, n. 1, p. 140-145, 2003.
TOMAR, R. S. et al. A novel mechanism of antagonism between ATP-dependent chroma-tin remodeling complexes regulates RNR3 expression. Molecular and cellular biology, v. 29, n. 12, p. 3255-3265, 2009.
VRBA, J. et al. Chelerythrine and dihydrochelerythrine induce G1 phase arrest and bimodal cell death in human leukemia HL-60 cells. Toxicology in vitro, v. 22, n. 4, p. 1008-1017, 2008.
WATSON, J. D. et al. Biologia molecular do gene. Artmed Editora, 2015.
WEI, C. et al. Estramustine phosphate induces prostate cancer cell line PC3 apoptosis by down-regulating miR-31 levels. European Review for Medical and Pharmacological Sciences, v. 22, p. 40-45, 2018.
WEISS, Karin et al. De novo mutations in CHD4, an ATP-dependent chromatin remodeler gene, cause an intellectual disability syndrome with distinctive dysmorphisms. The Amer-ican Journal of Human Genetics, v. 99, n. 4, p. 934-941, 2016.
WITZEL, Maximilian et al. Chromatin-remodeling factor SMARCD2 regulates transcrip-tional networks controlling differentiation of neutrophil granulocytes. Nature genetics, v. 49, n. 5, p. 742, 2017.
XU, Yang; ZHANG, Jin; CHEN, Xinbin. The activity of p53 is differentially regulated by Brm-and Brg1-containing SWI/SNF chromatin remodeling complexes. Journal of Biological Chemistry, v. 282, n. 52, p. 37429-37435, 2007.
YAO, Ting-Jing et al. AZD-4547 exerts potent cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-expressing colorectal cancer cells. Tumor Biolo-gy, v. 36, n. 7, p. 5641-5648, 2015.
YAN, Zhijiang et al. PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes & development, v. 19, n. 14, p. 1662-1667, 2005.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.