Insecticide evaluation of the Cymbopogon citratus (DC.) Stapf essential oil in Aedes aegypti

Authors

  • Núbia Priscila Leite Távora
  • Brenda Freire dos Santos
  • Francisco Soares de Souza
  • Raimundo Nonato Picanço Souto
  • Alexandro Cezar Florentino
  • Ryan da Silva Ramos
  • Mayara Tânia Pinheiro
  • Alex Bruno Lobato Rodrigues

DOI:

https://doi.org/10.55905/oelv21n10-090

Keywords:

epidemiology, insects, chemical control

Abstract

The objective was to determine the phytochemical composition and evaluate the in silico and in vivo biocidal activity of the essential oil of Cymbopogon citratus (DC.) Stapf in an Aedes aegypti model. The phytochemical composition was analyzed using Gas Chromatography coupled to the Mass Spectrometer, while molecular docking was used to evaluate the potential for inhibition of Acetylcholinesterase. The ovicidal, larvicidal, and adulticidal activities were investigated to evaluate the capacity of the essential oil to inhibit egg hatching and to cause mortality in larvae and adults of A. aegypti. The phytochemical analysis revealed the presence of 11 different compounds, with emphasis on β-myrcene (24.03%), β-citral (27.45%), and Neral (35.36%). In molecular docking, the compounds Geraniol (3.96%) and Linalool (2.77%) proved to be the best inhibitors. As for insecticidal activities, the essential oil of C. citratus was effective in inhibiting the hatching of A. aegypti eggs and was highly toxic to larvae. However, toxicity in adults of A. aegypti was incipient. These results indicate that the essential oil of C. citratus has potential as a candidate for the development of new insecticides aimed at controlling the immature stages of A. aegypti, possibly due to the inhibition of the enzyme acetylcholinesterase.

References

ADAMS, R. (2012). Identification Of Essential Oil Components by Gas Chromatography/ Mass Spectrometry (4th ed., Vol. 1). Allured Business Media.

Amer, A., & Mehlhorn, H. (2006). Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitology Research, 99(4), 466–472. https://doi.org/10.1007/s00436-006-0182-3

Bassolé, H. M., Guelbeogo, W. M., Nébié, R., Constantini, C., Sagnon, N. F., Kabore, Z. I., & Traoré, S. A. (2003). Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Bukina Faso. Parassitologia, 45(1), 23–26. https://www.researchgate.net/publication/8438194

Bizzo, H. R., Hovell, A. M. C., & Rezende, C. M. (2009). Óleos essenciais no Brasil: aspectos gerais, desenvolvimento e perspectivas. Química Nova, 32(3), 588–594. https://doi.org/10.1590/S0100-40422009000300005

Brito, E. S. De, Garruti, D. S., Barreto, P., Arie, A., & Blank, F. (2011). Caracterização Odorífera dos Componentes do Óleo Essencial de Capim-Santo (Cymbopogon citratus (DC.) Stapf., Poaceae) por Cromatografia Gasosa (CG)-Olfatometria (1st ed.). Embrapa. www.cnpat.embrapa.br

Cabrini, I., Andrade, C. F. S., Ferreira, M. da C., & de Arruda, E. J. (2016). A simple method for immobilising small dipteran insects and its validation for Aedes aegypti. Entomologia Experimentalis et Applicata, 160(1), 96–100. https://doi.org/10.1111/eea.12457

Canaes, T. de S. (2011). Capim-Limão (Cymbopogon Citratus (Dc.) Stapf) Na Alimentação De Cabras Saanen Nos Parâmetros Hematológicos, Bioquímicos, Produção, Composição E Aceitação Do Leite [Universidade Estadual Paulista]. https://doi.org/https://repositorio.unesp.br/handle/11449/102599

Castillo, R. M., Stashenko, E., & Duque, J. E. (2017). Insecticidal and Repellent Activity of Several Plant-Derived Essential Oils Against Aedes aegypti. Journal of the American Mosquito Control Association, 33(1), 25–35. https://doi.org/10.2987/16-6585.1

Cheng, S., Chang, H., Chang, S.-}Tzen, Tsai, K.-H., & Chen, W. (2003). Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresource Technology, 89(1), 99–102. https://doi.org/10.1016/S0960-8524(03)00008-7

Cortez, L. E. R., Yamaguchi, M. U., Cortez, D. A. G., & Pesco, D. C. S. (2015). Avaliação da atividade antifúngica dos óleos essencias de Lippia alba (Mill.) N. E. Brown (Verbenaceae) e Cymbopogon citratus (D.C.) Stapf (Poaceae). Mundo Da Saude, 39(4), 433–440. https://doi.org/10.15343/0104-7809.20153904433440

Coto, M. M. R., Zavala, M. del C. T., Lazcano, J. A. B., Levya, Y. R., Pacheco, L. F., & Lópes, I. F. (2013). Eficacia del pyriproxyfeno en cepas de referencia de Aedes aegypti susceptible y resistente a temefos Efficacy of pyriproxyfen in reference strains of Aedes aegypti susceptible and resistant to temephos. Revista Cubana de Medicina Tropical, 65(3), 328–338. http://scielo.sld.cu

GOMES, P. R. B., SILVA, A. L. S., PINHEIRO, H. A., CARVALHO, L. L., LIMA, H. S., SILVA, E. F., SILVA, R. P., LOUZEIRO, C. H., OLIVEIRA, M. B., & FILHO, V. E. M. (2016). Avaliação da atividade larvicida do óleo essencial do Zingiber officinale Roscoe (gengibre) frente ao mosquito Aedes aegypti. Revista Brasileira de Plantas Medicinais, 18(2 suppl 1), 597–604. https://doi.org/10.1590/1983-084x/15_214

Harel, M., Kryger, G., Rosenberry, T. L., Mallender, W. D., Lewis, T., Fletcher, R. J., Guss, J. M., Silman, I., & Sussman, J. L. (2000). Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Science, 9(6), 1063–1072. https://doi.org/10.1110/ps.9.6.1063

Jayakumar, M., Arivoli, S., Raveen, R., & Tennyson, S. (2016). Larvicidal and pupicidal efficacy of plant oils against Culex quinquefasciatus Say 1823 (Diptera: Culicidae). ~ 449 ~ Journal of Entomology and Zoology Studies, 4(5), 449–456.

Laura de Sene Amâncio Zara, A., Maria dos Santos, S., Synthia Fernandes-Oliveira, E., Gomes Carvalho, R., & Evelim Coelho, G. (2016). Estratégias de controle do Aedes aegypti: uma revisão. Epidemiologia e Serviços de Saúde, 25(2), 1–2. https://doi.org/10.5123/S1679-49742016000200017

Lima-Camara, T. N. (2016). Emerging arboviruses and public health challenges in Brazil. Revista de Saúde Pública, 50(0). https://doi.org/10.1590/S1518-8787.2016050006791

Luz, C., Tai, M. H. H., Santos, A. H., Rocha, L. F. N., Albernaz, D. A. S., & Silva, H. H. G. (2007). Ovicidal Activity of Entomopathogenic Hyphomycetes on Aedes aegypti (Diptera: Culicidae) Under Laboratory Conditions. Journal of Medical Entomology, 44(5), 799–804. https://doi.org/10.1093/jmedent/44.5.799

Manvitha, K., & Bidya, B. (2014). Review on pharmacological activity of Cymbopogon citratus. ~ 5 ~ International Journal of Herbal Medicine, 1(6), 5–7. www.ukessays.com.

Martins, R. L., Simões, R. C., Rabelo, É. de M., Farias, A. L. F., Rodrigues, A. B. L., Ramos, R. da S., Fernandes, J. B., Santos, L. da S., & de Almeida, S. S. M. da S. (2016). Chemical Composition, an Antioxidant, Cytotoxic and Microbiological Activity of the Essential Oil from the Leaves of Aeollanthus suaveolens Mart. ex Spreng. PLOS ONE, 11(12), e0166684. https://doi.org/10.1371/journal.pone.0166684

Meriç, A. (2017). Molecular modelling of 2-iminothiazoles as insecticidal activity. Bulgarian Chemical Communications, 49(1), 5–14.

Negrelle, R. R. B., & Gomes, ; (2007). Cymbopogon citratus (DC.) Stapf : chemical composition and biological activities. In Rev. Bras. Pl. Med (Issue 1).

Pereira, G. P., Prado, A. E. do, & Carvalho, R. I. N. de. (2016). Variação mensal do rendimento de óleo essencial de citronela. Revista Eletrônica Científica Da UERGS, 2(2), 183. https://doi.org/10.21674/2448-0479.22.183-189

Pinto, Z. T., Sánchez, F. F., Santos, A. R. dos, Amaral, A. C. F., Ferreira, J. L. P., Escalona-Arranz, J. C., & Queiroz, M. M. de C. (2015). Chemical composition and insecticidal activity of Cymbopogon citratus essential oil from Cuba and Brazil against housefly. Revista Brasileira de Parasitologia Veterinária, 24(1), 36–44. https://doi.org/10.1590/S1984-29612015006

Pushpanathan, T., Jebanesan, A., & Govindarajan, M. (2006). Larvicidal, ovicidal and repellent activities of Cymbopogan citratus Stapf (Graminae) essential oil against the filarial mosquito Culex quinquefasciatus (Say) (Diptera : Culicidae). In Tropical Biomedicine (Vol. 23, Issue 2).

Ramos, R., Costa, J., Silva, R., da Costa, G., Rodrigues, A., Rabelo, É., Souto, R., Taft, C., Silva, C., Rosa, J., Santos, C., & Macêdo, W. (2019). Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening. Pharmaceuticals, 12(1), 20. https://doi.org/10.3390/ph12010020

Regina Terra, M., Sterza Silva, R. DA, Gorete Nicolette Pereira, M., & Ferreira Lima, A. (2017). Aedes Aegypti E As Arbovíroses Emergentes No Brasil Aedes Aegypti And Emerging Arborovers In Brazil. Revista UNINGÁ Review, 30(3), 52–60.

Rodrigues, A. B. L., Lopes de Matos, J., Martins, R. L., Ra, É. de M., Brandão, L. B., Santos, L. L., Faustino, C. G., Rodrigues de Oliveira, F., & Moreira da Silva de Almeida, S. S. (2022). Ethnopharmacological Use, Secondary Metabolites and Biological Activity of Ayapana triplinervis (VAHL) R. M. King and H. Rob.: A Systematic Review. Pharmacognosy Reviews, 16(32), 70–73. https://doi.org/10.5530/phrev.2022.16.10

Rodrigues, A. B. L., Martins, R. L., Rabelo, É. de M., Matos, J. L. de, Santos, L. L., Brandão, L. B., Chaves, R. do S. B., Costa, A. L. P. da, Faustino, C. G., Sá, D. M. da C., Farias, A. L. F., Cantuaria, P. de C., & Almeida, S. S. M. da S. de. (2022). In silico and in vivo study of adulticidal activity from Ayapana triplinervis essential oils nano-emulsion against Aedes aegypti. Arabian Journal of Chemistry, 15(9), 104033. https://doi.org/10.1016/j.arabjc.2022.104033

Rodrigues, A. B. L., Martins, R. L., Rabelo, É. de M., Tomazi, R., Santos, L. L., Brandão, L. B., Faustino, C. G., Ferreira Farias, A. L., dos Santos, C. B. R., de Castro Cantuária, P., Galardo, A. K. R., & de Almeida, S. S. M. da S. (2021). Development of nano-emulsions based on Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PLOS ONE, 16(7), e0254225. https://doi.org/10.1371/journal.pone.0254225

Santos, L. L., Brandão, L. B., Pena da Costa, A. L., Lopes Martins, R., Rodrigues, A. B. L., & Silva de Almeida, S. S. M. (2022). The Potentiality of Plant Species from the Lamiaceae Family for the Development of Herbal Medicine in the Control of Diseases Transmitted by Aedes aegypti. Pharmacognosy Reviews, 16(31), 40–44. https://doi.org/10.5530/phrev.2022.16.7

Soonwera, M., & Phasomkusolsil, S. (2016). Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitology Research, 115(4), 1691–1703. https://doi.org/10.1007/s00436-016-4910-z

TINTINO, S. R., F. LUCENA, B. F., FIGUEREDO, F. G., DE M. OLIVEIRA, C. D., DOS S. AGUIAR, J. J., DO N. CARDOSO, E., A. DE AQUINO, P. E., C. ANDRADE, J., M.COUTINHO, H. D., & F. MATIAS, E. F. (2014). Evaluation of Antibacterial Activity of Aminoglycosides and Modulating the Essential Oil of Cymbopogon citratus (DC.) Stapf. Acta Biológica Colombiana, 20(1), 39–45. https://doi.org/10.15446/abc.v20n1.41673

Williams, J., Pinto, J., Macdonald, M., & O’sullivan, J. (n.d.). Training Manual on Malaria Entomology For Entomology and Vector Control Technicians (Basic Level) Integrated Vector Management of Malaria and Other Infectious Diseases Task Order 2 Contract. www.rti.org.

World Health Organization. (1970). Insecticide Resistance and Vector Control.

WORLD HEALTH ORGANIZATION. (2005). Guidelines For Laboratory And Field Testing Of Mosquito Larvicides. https://apps.who.int/iris/handle/10665/69101

Downloads

Published

2023-10-13

How to Cite

Távora, N. P. L., dos Santos, B. F., de Souza, F. S., Souto, R. N. P., Florentino, A. C., Ramos, R. da S., Pinheiro, M. T., & Rodrigues, A. B. L. (2023). Insecticide evaluation of the Cymbopogon citratus (DC.) Stapf essential oil in Aedes aegypti. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(10), 16158–16180. https://doi.org/10.55905/oelv21n10-090

Issue

Section

Articles

Most read articles by the same author(s)