Numerical investigation of filtering cyclones using response surface methodology and CFD simulation approaches
DOI:
https://doi.org/10.55905/oelv21n9-159Keywords:
filtering, cyclone, CFD, simulations, permeabilityAbstract
The cyclone separator pressure drop depends on the geometry and the operating conditions. Alternative equipment to decrease pressure drop is the filtering device. In this paper, the effect of inlet height, inlet flow rate, and conical section permeability about the filtering cyclone performance (Euler number) is studied through CFD simulations. The experimental and numerical results indicate that the turbulence model Large-Eddy Simulations (LES) reasonably predict the pressure drop in high swirling flows in filtering cyclones. CFD simulations suggest the Euler number increase with the increase of inlet height and decrease with the increase of flow rate and permeability. However, there is an interaction between the permeability with the other two variables. Therefore, this study suggests that CFD models can be used as instruments to evaluate same structural and operational variables in the filtering cyclone performance.
References
ANDRADE, A. C; BARROZO, M. S; DAMASCENO, J. J. R. Estudo do efeito do tamanho da seção cônica sobre o desempenho de ciclones com mangas. 2002. Universidade Federal de Uberlândia, 2002.
BARROZO, M.A.S; DAMASCENO, J.J.R.; LANNA, A. Estudo de Desempenho de um Hidrociclone Filtrante. Revista Ciência & Engenharia, vol. 1, p. 175–186, 1992. Available at: https://repositorio.ufu.br/bitstream/123456789/15110/1/Celso.pdf.
BOX, G. E. P.; HUNTER, W. G.; HUNTER, J. S. Statistics for Experiments. An Introduction to Design, Data Analysis and Model Building. New York: John Wiley & Sons, 1978.
BOYSAN, F.; AYERS, W. H.; SWITHENBANK, J. FUNDAMENTAL MATHEMATICAL MODELLING APPROACH TO CYCLONE DESIGN. TRANS INST CHEM ENG, vol. V 60, no. N 4, p. 222–230, 1982. Available at: https://books.google.com.br/books?id=UwSVPQAACAAJ.
CORTES, C.; GIL, A. Modeling the gas and particle flow inside cyclone separators. Progress in Energy and Combustion Science, vol. 33, no. 5, p. 409–452, Oct. 2007. DOI 10.1016/j.pecs.2007.02.001. Available at: https://linkinghub.elsevier.com/retrieve/pii/S036012850700010X.
DAMASCENO, J. J. R.; BARROZO, M. A. S. Ciclone Filtrante. Brazil: [s. n.], 2008.
DHOTRE, M. T.; NICENO, B.; SMITH, B. L.; SIMIANO, M. Large-eddy simulation (LES) of the large scale bubble plume. Chemical Engineering Science, vol. 64, no. 11, p. 2692–2704, Jun. 2009. DOI 10.1016/j.ces.2009.02.040. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0009250909001468.
ELSAYED, K.; LACOR, C. Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches. Powder Technology, vol. 212, no. 1, p. 115–133, Sep. 2011. DOI 10.1016/j.powtec.2011.05.002. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0032591011002361.
ELSAYED, K.; LACOR, C. Modeling and Pareto optimization of gas cyclone separator performance using RBF type artificial neural networks and genetic algorithms. Powder Technology, vol. 217, p. 84–99, Feb. 2012. DOI 10.1016/j.powtec.2011.10.015. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0032591011005584.
ELSAYED, K.; LACOR, C. The effect of cyclone vortex finder dimensions on the flow pattern and performance using LES. Computers & Fluids, vol. 71, p. 224–239, Jan. 2013. DOI 10.1016/j.compfluid.2012.09.027. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0045793012004082.
FUKUI, K.; YOSHIDA, H.; JIKIHARA, K.; YAMAMOTO, T. Effects of clean-air injection on particle-separation performance of novel cyclone with sintered metal cone. Separation and Purification Technology, vol. 80, no. 2, p. 356–363, Jul. 2011. DOI 10.1016/j.seppur.2011.05.021. Available at: https://linkinghub.elsevier.com/retrieve/pii/S1383586611003121.
HOFFMANN, A.; STEIN , L.; BRADSHAW, P. Gas Cyclones and Swirl Tubes: Principles, Design and Operation. Applied Mechanics Reviews, vol. 56, no. 2, p. B28–B29, 1 Mar. 2003. DOI 10.1115/1.1553446. Available at: https://asmedigitalcollection.asme.org/appliedmechanicsreviews/article/56/2/B28/458839/Gas-Cyclones-and-Swirl-Tubes-Principles-Design-and.
KAYA, F.; KARAGOZ, I. Performance analysis of numerical schemes in highly swirling turbulent flows in cyclones. Current Science, vol. 94, no. 10, p. 1273–1278, 27 Aug. 2008. Available at: http://www.jstor.org/stable/24100235.
LACERDA, A. F. Estudo dos efeitos das variáveis geométricas no desempenho de ciclones convencionais e infiltrantes. 2007. 138 f. Universidade Federal de Uberlândia, 2007.
LEITH, D.; MEHTA, D. Cyclone performance and design. Atmospheric Environment (1967), vol. 7, no. 5, p. 527–549, May 1973. DOI 10.1016/0004-6981(73)90006-1. Available at: https://linkinghub.elsevier.com/retrieve/pii/0004698173900061.
LIU, A.-L.; ZHANG, Y.-H.; MA, L.; WANG, Y.-M.; HE, M.-Y. Effect of inlet particle arrangement on separating property of a cyclone separator. Korean Journal of Chemical Engineering, vol. 35, no. 6, p. 1380–1387, 23 Jun. 2018. DOI 10.1007/s11814-018-0026-8. Available at: http://link.springer.com/10.1007/s11814-018-0026-8.
MONTGOMERY, D. C.; RUNGER, G. C. Applied statistics and probability for engineers. [S. l.]: John wiley & sons, 2010.
RAOUFI, A.; SHAMS, M.; FARZANEH, M.; EBRAHIMI, R. Numerical simulation and optimization of fluid flow in cyclone vortex finder. Chemical Engineering and Processing: Process Intensification, vol. 47, no. 1, p. 128–137, Jan. 2008. DOI 10.1016/j.cep.2007.08.004. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0255270107002607.
RODRIGUES, M. V. Análise do Desempenho de um Ciclone com Mangas: Efeito da Permeabilidade do Meio Filtrante. 2001. 111 f. Universidade Federal de Uberlândia, 2001.
RODRIGUES, M. V.; AROUCA, F. O.; BARROZO, M. A. S.; DAMASCENO, J. J. R. Analysis of the efficiency of a cloth cyclone: the effect of the permeability of the filtering medium. Brazilian Journal of Chemical Engineering, vol. 20, no. 4, p. 435–443, Oct. 2003. DOI 10.1590/S0104-66322003000400010. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322003000400010&lng=en&tlng=en.
SOUZA, F. . Analise da influência do meio filtrante no comportamento de hidrociclone filtrante. 1999. Universidade Federal de Uberlândia, 1999.
VENKATESH, S.; SAKTHIVEL, M.; AVINASILINGAM, M.; GOPALSAMY, S.; ARULKUMAR, E.; DEVARAJAN, H. P. Optimization and experimental investigation in bottom inlet cyclone separator for performance analysis. Korean Journal of Chemical Engineering, vol. 36, no. 6, p. 929–941, 7 Jun. 2019. DOI 10.1007/s11814-019-0266-2. Available at: http://link.springer.com/10.1007/s11814-019-0266-2.
VIEIRA, L. G. M.; BARBOSA, E. A.; DAMASCENO, J. J. R.; BARROZO, M. A. S. Performance analysis and design of filtering hydrocyclones. Brazilian Journal of Chemical Engineering, vol. 22, no. 1, p. 143–152, Mar. 2005. DOI 10.1590/S0104-66322005000100015. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322005000100015&lng=en&tlng=en.
YANG, J.; SUN, G.; GAO, C. Effect of the inlet dimensions on the maximum-efficiency cyclone height. Separation and Purification Technology, vol. 105, p. 15–23, Feb. 2013. DOI 10.1016/j.seppur.2012.12.020. Available at: https://linkinghub.elsevier.com/retrieve/pii/S138358661200665X.
ZHAO, B.; SU, Y.; ZHANG, J. Simulation of Gas Flow Pattern and Separation Efficiency in Cyclone with Conventional Single and Spiral Double Inlet Configuration. Chemical Engineering Research and Design, vol. 84, no. 12, p. 1158–1165, Dec. 2006. DOI 10.1205/cherd06040. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0263876206730040.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.