Circadian influence on neurons of the substantia nigra


  • Jeferson Santiago
  • Gyovanna Sorrentino dos Santos Campanari
  • Gabriel Milanez Silva
  • Ana Letícia Carneiro de Camargo
  • Lenita Mayumi
  • Eduardo Vinicius Barboza dos Santos
  • Caio Sérgio Galina Spilla
  • Luciana Pinato
  • Leila Maria Guissoni Campos



cryptochrome, clock genes, dopamine, nocturnal/diurnal behavior


Circadian rhythms, such as body temperature, hormone secretion, sleep/wake, and activity/rest, are generated by the oscillation of the clock genes in the cells of the suprachiasmatic nucleus, thus considered the main circadian oscillator. Dopamine, whose synthesis occurs in centers such as the substantia nigra pars compacta (SNc) can influence autonomic oscillation. Dopamine can modulate the expression of clock genes; meanwhile, the presence of clock genes in this area could indicate a cyclic mechanism in dopamine-producing cells. Although the involvement of SNc in motor and non-motor functions is well known, the role of the circadian system in this region is not clear. In this study, we investigated the presence of Per1, Per2, and Cry1 in dopaminergic neurons of the SNc. Per1, Per2, and Cry1 imunorreactivity were analyzed at specific times of the light-dark phase by immunohistochemistry technique in a diurnal primate. The mapping performed by immunohistochemistry showed expressive Per1-IR with predominance during daytime. The Per2-IR and Cry1-IR were similar between the light and dark times analyzed. These results reinforce the presence of proteins that regulate circadian rhythms in the SNc, an important dopaminergic source.


Akhisaroglu, M., Kurtuncu, M., Manev, H., Uz, T. (2005): Diurnal rhythms in quinpirole-induced locomotor behaviors and striatal D2/D3 receptor levels in mice. Pharmacol. Biochem. Behav. 80: 371-377.

Bae, K., Jin, X., Maywood, E.S., Hastings, M.H., Reppert, S.M., Weaver, D.R. (2001). Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30: 525-536.

Björklund, A., Dunnett, S.B. (2007). Dopamine neuron systems in the brain: an update. Trends Neurosci. 30: 194-202.

Barrot, M. (2014). The ventral tegmentum and dopamine: a new wave of diversity. Neuroscience 282: 243-247.

Bruguerolle, B., Simon, N. (2002). Biologic rhythms and Parkinson’s disease: A chronopharmacologic approach to considering fluctuations in function. Clin Neuropharmacol. 4: 194–201.

Bussi, I.L., Levín, G., Golombek, D.A., Agostino, P.V. (2014). Involvement of dopamine signaling in the circadian modulation of interval timing. Eur. J. Neurosci. 40(1):2299-310).

Castaneda, T.R., de Prado, B.M., Prieto, D., Mora, F. (2004). Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J. Pineal Res. 36, pp. 177-185.

Chung, S., Lee, E.J., Yun, S., Choe, H.K., Park, S.B., Son, H.J., Kim, K.S., Dluzen, D.E., Lee, I., Hwang, O., Son, G.H., Kim, K. (2014). Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell 157: 858-868.

Doyle, S.E., McIvor, W.E., Menaker, M. (2002). Circadian rhythmicity in dopamine content of mammalian retina: role of the photoreceptors. J Neurochem. 83: 211-219.

Dunlap, J.C. (1999). Molecular bases for circadian clocks. Cell 96: 271-290.

Fifel, K., Cooper, H.M. (2014). Loss of dopamine disrupts circadian rhythms in a mouse model of Parkinson's disease. Neurobiol Dis. Nov;71:359-69.

Fifel, K., Vezoli, J., Dzahini, K., Claustrat, B., Leviel, V., Kennedy, H., Procyk E., Dkhissi-Benyahya, O., Gronfier, C., Cooper, H.M. (2014). Alteration of daily and circadian rhythms following dopamine depletion in MPTP treated non-human primates. PLoS One 23,9(1):e86240.

Fifel, K., El Farissi, A., Cherasse, Y., Yanagisawa, M. (2022). Motivational and Valence-Related Modulation of Sleep/Wake Behavior are Mediated by Midbrain Dopamine and Uncoupled from the Homeostatic and Circadian Processes. Adv. Sci. (Weinh). 9(24):e2200640.

Golombek, D.A., Bussi, I.L. & Agostino, P.V. (2014). Minutes, days and years: molecular interactions among different scales of biological timing. Philos. T. Roy. Soc. B., 369, 20120465.

Guissoni Campos, L.M., Cruz-Rizzolo, R.J., Pinato, L. (2015). The primate seahorse rhythm. Brain Res. 1613: 81-91.

Hampp, G., Ripperger, J.A., Houben, T., Schmutz, I., Blex, C., Perreau-Lenz, S., Brunk, I., Spanagel, R., Ahnert-Hilger, G., Meijer, J.H., Albrecht, U. (2008). Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol. 18: 678–683.

Hartmann, A., Veldhuis, J.D., Deuschle, M., Standhardt, H., Heuser, I. (1997). Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: Ultradian secretory pulsatility and diurnal variation. Neurobiol Aging. 18: 285-289.

Hirayama, J., Sassone-Corsi, P. (2005). Structural and functional features of transcription factors controlling the circadian clock. Curr Opin Genet Dev. 5,548-556.

Hood, S., Cassidy, P., Cossette, M.P., Weigl, Y., Verwey, M., Robinson, B. (2010). Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J. Neurosci. 30: 14046-14058.

Imbesi, M., Yildiz, S., Arslan, A. D., Sharma, R., Manev, H., and Uz, T. (2009). Dopamine receptor-mediated regulation of neuronal “clock” gene expression. Neuroscience 158, 537–544.

Isobe, Y., Nishino, H. (2001). Circadian rhythm of drinking and running-wheel activity in rats with 6-hydroxydopamine lesions of the ventral tegmental area. Brain Res. 899: 187–192.

Kafka, M.S., Benedito, M.A., Roth, R.H., Steele, L.K., Wolfe, W.W. & Catravas, G.N. (1986) Circadian rhythms in catecholamine metabolites and cyclic nucleotide production. Chronobiol. Int., 3, 101–115.

Kim, J., Jang, S., Choe, H.K., Chung, S., Son, G.H., Kim, K. (2017). Implications of Circadian Rhythm in Dopamine and Mood Regulation. Mol. cells. 40: 450-456.

Kirill, S., Korshunov, L., Blakemore, J., Trombley, P.L.Q. (2017). Dopamine: A Modulator of Circadian Rhythms in the Central Nervous System. Front. Cell Neurosci. 11:91.

Lowrey, P.L., Takahashi, J.S. (2011). Genetics of circadian rhythms in Mammalian model organisms. Adv. Genet. 74: 175–230.

Mendoza, J., Challet, E. (2014). Circadian insights into dopamine mechanisms. Neuroscience 282: 230-242.

Mcclung, C.A. (2007). Circadian rhythms, the mesolimbic dopaminergic circuit, and drug addiction. Scientific World Journal 7: 194-202.

Popova, E. (2014). Role of dopamine in distal retina. J. Comp. Physiol. A 200, 333–358.

Reppert, S.M., Weaver, D.R. (2002). Coordination of circadian timing in mammals. Nature 8: 935–941.

Shailesh, K., Dechun, C., Amita, S. (2012). Dopamine acts through Cryptochrome to promote acute arousal in Drosophila. Genes Dev. 26: 1224–1234.

Sleipness, E.P., Sorg, B.A. & Jansen, H.T. (2007) Diurnal differences in dopamine transporter and tyrosine hydroxylase levels in rat brain: dependence on the suprachiasmatic nucleus. Brain Res. 1129, 34–42.

Shumay, E., Fowler, J.S., Wang, G.J., Logan, J., Alia-Klein, N., Goldstein, R.Z., Maloney, T., Wong, C. & Volkow, N.D. (2012) Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability. Transl. Psychiatry. 2, e86.

Vielhaber, E.L., Duricka, D., Ullman, K.S., Virshup, D.M. (2001). Nuclear export of mammalian PERIOD proteins. J. Biol. Chem. 276(49):45921-7.

Wise, R.A. (2004). Dopamine, learning and motivation. Nat Rev Neurosci. 5: 483–494.

Witting, W., Kwa, I.H., Eikelenboom, P., Mirmiran, M., Swaab, D.F. (1990). Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biol Psychiatry. 27: 563-572.

Wulff, K., Gatti, S., Wettstein, J.G., Foster, R.G. (2010). Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci. 11: 589-599.

Yujnovsky, I., Hirayama, J., Doi, M., Borrelli, E., Sassone-Corsi, P. (2006). Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. PNAS USA. 103: 6386–6391.




How to Cite

Santiago , J., Campanari, G. S. dos S., Silva, G. M., de Camargo, A. L. C., Mayumi, L., dos Santos, E. V. B., Spilla , C. S. G., Pinato, L., & Campos, L. M. G. (2023). Circadian influence on neurons of the substantia nigra. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(8), 9091–9104.