A obesidade materna como fator predisponente no desenvolvimento da síndrome cardiometabólica nos descendentes

Authors

  • Isabelle Vitória Freire de Oliveira
  • Maria Fernanda Valério de Melo
  • Ana Laura Valério de Melo
  • Jean Carlos Fernando Besson
  • Rodrigo Vargas

DOI:

https://doi.org/10.55905/oelv21n8-134

Keywords:

sistema cardiovascular, metabolismo materno, dieta hipercalórica

Abstract

Estudos recentes indicam que várias doenças que acometem jovens e adultos decorrem de eventos relacionados à gestação e lactação. Tal fato relaciona-se diretamente à programação metabólica, a qual roga que um desbalanço no ambiente perinatal é o principal determinante de disfunções cardiometabólicas. Salienta-se a influência direta da obesidade materna no desenvolvimento dessa doença, a qual se manifesta cada vez mais precocemente nos indivíduos através de obesidade infantil, resistência insulínica, cardiopatias, hiperfagia, dislipidemia, entre outros. Esse estudo objetivou esclarecer as lacunas na relação entre a obesidade materna e sua influência no sistema cardiovascular dos descendentes. Foi realizada uma revisão de literaturas, buscando estudos clínicos, revisões sistemáticas e meta-análises publicados em inglês e português, nas bases de dados PubMed, LILACS, Scielo, e no Portal Periódicos CAPES de agosto de 2022 a agosto de 2023. A partir dos dados coletados, identificou-se a relação direta entre o metabolismo da mãe obesa e injúrias no sistema cardiovascular dos descendentes, assim como as limitações funcionais na vida desse. Assim, através deste trabalho, será possível contribuir com o conhecimento de profissionais da saúde, melhorando o manejo do binômio mãe-filho no sistema único de saúde.

References

Azevedo FR, Brito BC. Influencia das variáveis nutricionais e da obesidade sobre a saúde o metabolismo. Rev Assoc Med Bras. 2012; 58:714-723.

Costa-Silva JH, Simões-Alves AC, Fernandes MP. Developmental Origins of Cardi-ometabolic Diseases: Role of the Maternal Diet. Frontiers in Physiology. 2016; 7:504.

Gottlieb, M. G., da Cruz, I. B. M., & Bodanese, L. C. Origem da Síndrome Metabólica: aspectos genético-evolutivos e nutricionais. Scientia Medica. 2008; 18(1), 39–44.

Bigio RS, Junior VE, Castro MA, César CLG, Fisberg RM, Marchioni DML. Determinantes do consumo de frutas e hortaliças em adolescentes por regressão quantíli-ca/ Determinants of fruit and vegetable intake in adolescents using quantile regression. Rev Saude Publica. 2011; 45(3): 448-56

Delisle H. Programming of chronic disease by impaired fetal nutrition: evidence and implications for policy and intervention strategies. World Health Organization. 2002; 93 p.

Santos, S. P. dos, & Oliveira, L. M. B. Baixo peso ao nascer e sua relação com obesidade e síndrome metabólica na infância e adolescência. Revista De Ciências Médicas E Biológicas. 2011; 10(3), 329–336.

Ross MG, Beall MH. Adult sequelae of intrauterine growth restriction. Semin Perina-tol. 2008;32(3):213-8.

Seco S, Matias A. Origem fetal das doenças do adulto: revisitando a teoria de barker. Acta Obstet ginecol Port. 2009; 3(3):158-168.

Clemente AP, Santos CD, Martins VJ, Benedito-Silva AA, Albuquerque MP, Sawaya AL. Mild stunting is associated with higher body fat: study of a low- income popula-tion. J Pediatr. 2011;87(2):138-44.

Rasyid H, Bakri S. Intra-uterine Growth Retardation and Development of Hyper-tension. Scientia Medica. 2016; 48(4):320-324. Av

Alexander BT. Fetal programming of hypertension. Am J Physiol. 2006:290;1-10.

Kamoda T, Nozue H, Matsui A. Serum levels of adiponectin and IGFBP-1 in short children born small for gestational age. Clin Endocrinol (Oxf). 2007;66(2):290-4.

Esquivel GM, Manzano GOD, Nogueira LGS, Dukievicz SL, Esquivel MM, Besson JCF, et al. A restrição proteica durante a lactação altera a morfologia renal de ratos listar ao desmame. Contemporary Journal. 2023;3(7):8498- 8511.

Hirschler V, Bugna J, Roque M, Gilligan T, Gonzalez C. Does low birth weight pre-dict obesity/ overweight and metabolic syndrome in elementary school children? Arch Med Res. 2008;39(8):796-802.

Keller G, Zimmer G, Mall G, et al. Nephron number in patients with primary hyper-tension. N Engl J Med. 2003:348;101-8.

Vehaskary VM, Woods L. Prenatal programming of hypertension: Lesson from ex-perimental models. J Am Soc Nephrol. 2005:16;2545-56.

Picó C, Reis F, Egas C, Mathias P, Matafome P. Lactation as a programming window for metabolic syndrome. Eur J Clin Invest. 2021 May;51(5):e13482.

Lau C, Rogers JM. Embryonic and fetal programming of physiological disorders in adulthood. Birth Defects Res C Embryo Today. 2004 Dec;72(4):300-12.

Lonnerdal B. Breast milk: a truly functional food. Nutrition. 2000 Jul-Aug;16(7-8):509-11.

Servera M, López SN, Zamanillo R, Picó C, Palou A, Serra F. Nutrigenomics and breast milk, perspectives in obesity in Lactation: Natural Processes, Physiological Re-sponses and Role in Maternity. Nova Science Publishers, Inc. 2012; p. 1-42.

Keikha M, Bahreynian M, Saleki M., Kelishadi R. Macro- and Micronutrients of Human Milk Composition: Are They Related to Maternal Diet? A Comprehensive Sys-tematic Review. Breastfeed Med. 2017 Sep;12(9):517-527.

Marseglia L, Manti S, D’Angelo G, Cuppari C, Salpietro V, Filippelli M, et al. Obesity and breastfeeding: the strength of association. Women Birth. 2015;28:81-6.

Jensen C, Lapillonne A. Docosahexaenoic acid and lactation. Prostaglandins Leukot Essent Fatty Acids. 2009 Aug-Sep;81(2-3):175-8.

Tinoco SMB, Sichieri R, Moura AS, Santos F da S, Carmo M das GT do. Importância dos ácidos graxos essenciais e os efeitos dos ácidos graxos trans do leite materno para o desenvolvimento fetal e neonatal. Cad Saúde Pública [Internet]. 2007 Mar;23(3):525–34.

Martin CR, Ling PR, Blackburn GL. Review of infant feeding: key features of breast milk and infant formula. Nutrients. 2016;8:279.

Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013;60:49–74.

Bzikowska-Jura A, Czerwonogrodzka-Senczyna A, Olędzka G, Szostak-Węgierek D, Weker H, Wesołowska A. Maternal Nutrition and Body Composition During Breast-feeding: Association with Human Milk Composition. Nutrients. 2018;10(10):1379.

Santos SP, Oliveira LMB. Baixo peso ao nascer e sua relação com obesidade e síndrome metabólica na infância e adolescência. R. Ci. med. biol. 2011;10(3):329-336.

Toscano M, De Grandi R, Grossi E, Drago L. Role of the Human Breast Milk-Associated Microbiota on the Newborns' Immune System: A Mini Review. Front Mi-crobiol. 2017;8:2100. doi: 10.3389/fmicb.2017.02100.

Chang N, Jung JA, Kim H, Jo A, Kang S, Lee SW, et al. Macronutrient composi-tion of human milk from Korean mothers of full-term infants born at 37-42 gestational weeks. Nutr Res Pract. 2015;9(4):433-8.

Palou M, Torrens JM, Castillo P, Sánchez J, Palou A, Picó C. Metabolomic ap-proach in milk from calorie-restricted rats during lactation: a potential link to the pro-gramming of a healthy phenotype in offspring. Eur J Nutr. 2019;59(3):1191-1204.

Delplanque B, Gibson R, Koletzko B, Lapillonne A, Strandvik B. Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities. J Pediatr Gastroenterol Nutr. 2015 Jul;61(1):8-17.

Martins IP, Vargas R, Saavedra LPJ, Rickli S, Matiusso CCI, Pavanello A, et al. Protein-caloric restriction induced HPA axis activation and altered the milk composition imprint metabolism of weaned rat offspring. Nutrition. 2022;108(111945):1-12.

McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55 Suppl 5:629-41.

Innis SM. Perinatal biochemistry and physiology of long-chain polyunsaturated fat-ty acids. J Pediatr. 2003;143(4 Suppl):S1-8.

Krohn K, Demmelmair H, Koletzko B. Macronutrient requirements for growth: fats and fatty acids. In: Duggan C, Watkins JB, Koletzko B, Walker WA, editors. Nutrition in pediatrics. Raleigh: People’s Medical Publishing House; 2016. p. 211-37.

Marcuzzi A, Loganes C, Valencic E, Piscianz E, Monasta L, Bilel S, Bortul R, Celeghini C, Zweyer M, Tommasini A. Neuronal Dysfunction Associated with Choles-terol Deregulation. Int J Mol Sci. 2018;19(5):1523.

Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P. Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tis-sue development and relationship to obesity. Prog Lipid Res. 2006;45(3):203–236.

Leturque A, Burnol AF, de Saintaurin MA, Pénicaud L, Girard J. Effect of feeding a high-fat diet during pregnancy on glucose metabolism in the rat. Metabolism. 1987;36(1):66-70.

Koletzko B, Rodriguez-Palmero M, Demmelmair H, Fidler N, Jensen R, Sauerwald T. Physiological aspects of human milk lipids. Early Hum Dev. 2001;65 Suppl:S3-18.

Uauy R, Dangour AD. Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev. 2006;64(5 Pt 2):S24-33.

De La Presa OS, Innis SM. Docosahexaenoic and arachidonic acid prevent a de-crease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets. J Nutr. 1999;129:2088-93.

Carlson SE, Clandinin MT, Cook HW, Emken EA, Filer Jr. LJ. Trans fatty acids: infant and fetal development. Am J Clin Nutr. 1997;66:715S-36S.

Elias SL, Innis SM. Infant plasma trans, n-6, and n-3 fatty acids and conjugated linoleic acids are related to maternal plasma fatty acids, length of gestation, and birth weight and length. Am J Clin Nutr. 2001;73:807-14.

. Koletzko B, Decsi T. Metabolic aspects of trans fatty acids. Clin Nutr. 1997;16:229-37.

Decsi T, Koletzko B. Do trans fatty acids impair linoleic acid metabolism in chil-dren? Ann Nutr Metab. 1995;39:36-41.

Grove KL, Smith MS. Ontogeny of the hypothalamic neuropeptide Y system. Phys-iol Behav. 2003;79:47-63.

Guerrero-Romero F, Aradillas-García C, Simental-Mendia LE, Monreal-Escalante E, de la Cruz Mendoza E, Rodríguez-Moran M. Birth weight, family history of diabetes, and metabolic syndrome in children and adolescents. J Pediatr. 2010;156(5):719-723.

Amaral YN di V do, Rocha DM, Silva LML da, Soares FVM, Moreira MEL. Morbidades maternas modificam a composição nutricional do leite humano? uma revisão sistemática. Ciência & Saúde Coletiva. 2019;24(7):2491-2498.

Campos CBdS, Palanch AC. Nutrição materna e programação fetal: o papel dos hábitos alimentares no desenvolvimento embrionário e pós-natal. Saúde Rev. 2017;17(45):49-59.

Fields DA, Demerath EW. Relationship of insulin, glucose, leptin, IL-6 and TNF-α in human breast milk with infant growth and body composition. Pediatr Obes. 2012;7(4):e29-32.

Miralles O, Sánchez J, Palou A, Picó C. A physiological role of breast milk leptin in body weight control in developing infants. Obesity. 2006;14:1371–1377.

Dewey KG. Growth characteristics of breast-fed compared to formula-fed infants. Biol Neonate. 1998;74:94–105.

Kwok MK, Schooling CM, Lam TH. Does breastfeeding protect against childhood overweight? Hong Kong’s ‘Children of 1997’ birth cohort. Int J Epidemiol 2010;39:297–305.

Koletzko B, von Kries K, Closa Monasterolo R, Subı?as JE, Scaglioni S, Giovannini M, et al. Can infant feeding choices modulate later obesity risk? Am J Clin Nutr 2009;89:1502–8. 44.

Socha P, Grote V, Gruszfeld D, Janas R, Demmelmair H, Closa-Monasterolo R, et al. Milk protein intake, the metabolic–endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr 2011;94:1776–84.

Published

2023-08-31

How to Cite

de Oliveira, I. V. F., de Melo, M. F. V., de Melo, A. L. V., Besson, J. C. F., & Vargas, R. (2023). A obesidade materna como fator predisponente no desenvolvimento da síndrome cardiometabólica nos descendentes. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(8), 10340–10356. https://doi.org/10.55905/oelv21n8-134

Issue

Section

Articles