Inoculant Bacillus subtilis UFMT-Pant001 promote plant growth and increase of soybean production

Authors

  • Aloisio Freitas Chagas Junior
  • Marco Antonio Camillo de Carvalho
  • Marco Eustáquio de Sá
  • Lillian França Borges Chagas
  • Letícia Carolina Costa
  • Alexandre Paulo Machado

DOI:

https://doi.org/10.55905/oelv21n9-053

Keywords:

bacteria, Glycine max (L.) Merr., nodulation, biomass, grain production

Abstract

Many strains of Bacillus subtilis are plant growth-promoting rhizobacteria (PGPR) because they have the ability to colonize the rhizosphere and promote plant growth, are essential for nutrient recycling and have potential as biofertilizers to increase productivity. This study aimed to demonstrate the efficiency of a liquid formulation of Bacillus subtilis UFMT-Pant001 as an inoculant to promote plant growth and soybean yield. Three field experiments were conducted in the municipalities of Alta Floresta (Mato Grosso), Ilha Solteira (São Paulo) and Selvíria (Mato Grosso do Sul) during the 2017 and 2017/2018 harvests. The biomass and productivity of soybean cultivars inoculated with different doses of B. subtilis UFMT-Pant001 were evaluated. The inoculation of B. subtilis UFMT-Pant001 positively influenced soybean biomass and productivity under field conditions in Alta Floresta, Ilha Solteira and Selvíria. Among the different field experiments and doses tested, positive results were observed in the treatments with doses of 200 mL per 50 kg of seed. Thus, a dose of 200 to 300 mL of inoculant with Bacillus subtilis UFMT-Pant001 at a concentration of 1 x 109 CFU mL-1 is recommended.

References

Atieno, M., Herrmann, L., Okalebo, R., & Lesueur, D. (2012). Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World Journal of Microbiology and Biotechnology, 28, 2541-2550.

Batista, B. D. (2017). Promoção de crescimento vegetal por Bacillus sp. RZ2MS9: dos genes ao campo. 107p. Tese (Doutorado) - Universidade de São Paulo.

Breedt, G., Labuschagne, N., & Coutinho, T. A. (2017). Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Annals of Applied Biology, 171, 229-236. https://doi.org/10.1111/aab.12366.

Cendale, T. C., Gonzáles, C. A. R., Cuásquer, C. P. V., Alzate, O. A. T., & Rodríguez, A. H. (2017). Efecto de Bacillus sobre la germinación y crecimiento de plántulas de tomate (Solanum lycopersicum L). Acta Biológica Colombiana, 22, 37-44.

Chagas Junior, A. F., Borba, E., Martins, L. L. M., Souza, M. C., Gomes, F. L., Oliveira, R. S., & Chagas, L. F. B. (2021). Bacillus sp. como promotor de crescimento em soja. Revista de Ciências Agrárias, 44, 170-179.

Chagas Junior A. F., Braga Junior, G. M., Lima, C. A., Martins, A. L. L., Souza, M. C., & Chagas, L. F. B. (2022a). Bacillus subtilis as a vegetable growth promoter inoculant in soybean. Diversitas Journal, 7(1), 0001-0016.

Chagas Junior, A. F., Braga Junior, G. M., Martins, A. L. L., Chagas, L. F. B., Miller, L. O., & Bezerra, A. C. C. (2022b). Bacillus subtilis Bs10 as an efficient inoculant for growth promotion in soybean plants. Semina: Ciênc. Agrár., 43(4), 1769-1786.

Conab. (2022). Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: grãos: 11º levantamento, agosto 2022: safra 2021/2022. Available at: https://www.gov.br/fazenda/pt-br/centraisde-conteudos/publicacoes/conjuntura-economica/agricola/2022/2022-08-10_levantamento-de-safras_conab-9.pdf. Access on: July 15, 2022.

Costa, L. C., Tavanti, R. F. R., Tavanti, T. R., & Pereira, C. S. (2019). Desenvolvimento de cultivares de soja após inoculação de estirpes de Bacillus subtilis. Nativa, 7(2), 126-132. https:// doi.org/10.31413/nativa.v7i2.6261.

Diaz, P. A. E., Baron, N. C., & Rigobelo, E. C. (2019). Bacillus spp. as plant growth-promoting bacteria in cotton under greenhouse conditions. Australian Journal of Crop Science, 13(12), 2003-2014, 2019. https://doi.org/10.21475/ajcs.19.13.12.p2003.

Fernandes, J. P. T., Nascente, A. S., Filippi, M. C. C., & Silva, M. A. (2021). Upland rice seedling performance promoted by multifunctional microorganisms. Semina: Ciências Agrárias, 1(42), 429-438. http://dx.doi.org/10.5433/1679-0359.2021v42n1p429.

Gagné-Bourque, F., Mayer, B. F., Charron, J., Vali, H., Bertrand, A., & Jabaji, S. (2015). Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. Plos One, 10(6), e0130456. http://dx.doi.org/10.1371/ journal.pone.0130456.

Guimarães, V. F., Klein, J., Silva, A. S. L., & Klein, D. K. (2021). Eficiência de inoculante contendo Bacillus megaterium (B119) e Bacillus subtilis (B2084) para a cultura do milho, associado à fertilização fosfatada. Research, Society and Development, 10(4), e431101220920. http://dx.doi.org/10.33448/rsdv10i12.20920

Hirooka, K. (2014). Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Bioscience, Biotechnology, and Biochemistry, 78, 1471-1484.

INMET. Instituto Nacional de Meteorologia. INMET/MAPA. Dados históricos anuais. 2017. https: //portal.inmet.gov.br/dadoshistoricos.

Jain, S., Kumari, S., Vaishnav, A., Choudhary, D. K., & Prakash, K. (2016). Isolation and characterization of plant growth promoting bacteria from soybean rhizosphere and their effect on soybean plant growth promotion. Int. J. Advanc. Sci. Tec. Res., 5, 397-410.

Kalam, S., Basu, A., & Podile, A. R. (2020). Functional and molecular characterization of plant growth promoting Bacillus isolates from tomato rhizosphere. Heliyon, 6, e04734. https://doi.org/10.1016/j.heliyon.2020.e04734.

Lagerlöf, J., Ayuke, F., Bejai, S., Jorge, G., Lagerqvist, E., Meijer, J., Johnmuturi, J., & Söderlund, S. (2015). Potential side effects of biocontrol and plant-growth promoting Bacillus amyloliquefaciens bacteria on earthworms. Applied Soil Ecology, 96, 159-164.

Lemfack, M. C., Nickel, J., Dunkel, M., Preissner, R., & Piechulla, B. (2014). mVOC: adatabase of microbial volatiles. Nucleic Acid Research, 42, D744-D748. https://doi.org/10.1093/nar/gkt1250.

Lobo, L. L. B., Santos, R. M., & Rigobelo, E. C. (2019). Promotion of maize growth using endophytic bacteria under greenhouse and field conditions. Australian Journal of Crop Science, 13, 2067-2-74, 2019. https://doi.org/10.21475/ajcs.19.13.12.p2077.

Mehmood, U., Inam-ul-Haq, M., Saeed, M., Altaf, A., Azam, F., & Hayat, S. (2018). A brief review on plant growth promoting rhizobacteria (PGPR): a key role in plant growth promotion. Plant Protection, 2, 77-82.

Meyer, M.C., Bueno, A. F., Mazaro, S.M., & Silva, J. C. (2022). Bioinsumos na cultura da soja. Brasília: Embrapa. 550p.

Nascente, A. S., Filippi, M. C., Lanna, A. C., Souza, A. C., Silva Lobo, V. L., & Silva, G. B. (2017). Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, 24(3), 2956-2965. http://10.1007/s11356-016-8013-2

Park, Y. S., Dutta, S., Ann, M., Raaijmakers, J. M., & Park, K. (2015). Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun, 461(2), 361-365.

Park, Y. G., Mun, B. G., Kang, S. M., Hussain, A., & Shahzad, R. (2017). Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PlosOne, 12(3), e0173203.

Pii, Y., Mimmo, T., Tomasi, N., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process: a review. Biology and Fertility of Soils, 51(4), 415-403. https://doi.org/10.1007/s00374-015-0996-1.

Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q., & Shen, Q. (2016). Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol Res, 192, 103-136.

Rocha, E. N. D. (2019). Inoculação de Bacillus subtilise tratamento químico em sementes de feijão Caupi e feijão comum: lotes, tempo de exposição e doses. 115 pp. Tese (Doutorado em Agronomia) - Faculdade de Engenharia do Campus de Ilha Solteira – UNESP.

Saeid, A., Prochownik, E., & Dobrowolska-Iwanek, J. (2018). Phosphorus solubilization by Bacillus species. Molecules, 23(11), 2897. https://doi.org/10.3390/molecules23112897.

Santos, B. M. S., Silva, M. S. R. A., Chávez, D. W. H., & Rigobelo, E. C. (2020). Genetic and nutritional diversity of Bacillus subtilis isolates demonstrating different aspects related to plant growth promotion. Australian Journal of Crop Science, 14(5), 888-880. https://doi.org/10.21475/ajcs.20.14.05.p2671.

Santos, A. F., Corrêa, B. O., Klein, J., Bono, J. A. M., Pereira, L. C., Guimarães, V. F., & Ferreira, M. B. (2021). Biometria e estado nutricional da cultura da aveia branca (Avena sativa L.) sob inoculação com Bacillus subtilis e B. Megaterium. Research, Society and Development, 10(5), e53410515270. http://dx.doi.org/10.33448/rsd-v10i5.15270.

Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2019). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128, 1583-1594. https://doi.org/doi:10.1111/jam.14506.

Silva, M. A., Cruz, D. R. C., Frasca, L. L. M., Filippi, M. C. C., Ferreira, A. L., & Nascente, A. S. (2022). Inoculation and co-inoculation with multifunctional rhizobacteria for the initial development of soybean. Pesq. Agropec. Trop., 52, e73558.

Souza, K. A., & Bittencourt, G. M. (2019). Avaliação do crescimento das exportações brasileiras de soja em grão. Revista de Política Agrícola, 28(4), 48-67.

Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front. Microbiol. 8, 171.

Tavanti, T. R., Tavanti, R. F. R., Galindo, F. S., Simões, I., Dameto, L. S., & Sá, M. E. (2020). Yield and quality of soybean seeds inoculated with Bacillus subtilis strains. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(1), 71-65. http://dx.doi.org/10.1590/1807-1929/agriambi.v24n1p65-71.

Xie, S., Wu, H., Zang, H., Wu, L., Zhu, Q., & Gao, X. (2014). Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol. Plant Microbe Interact., 27, 655-663. http://dx.doi.org/10.1094/MPMI-01-14-0010-R.

Downloads

Published

2023-09-12

How to Cite

Chagas Junior, A. F., de Carvalho, M. A. C., de Sá, M. E., Chagas, L. F. B., Costa, L. C., & Machado, A. P. (2023). Inoculant Bacillus subtilis UFMT-Pant001 promote plant growth and increase of soybean production. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 21(9), 11475–11496. https://doi.org/10.55905/oelv21n9-053

Issue

Section

Articles

Most read articles by the same author(s)